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Forewords

The Slovak—Czech Conference on Geometry and Graphics was held on
September 9-12, 2019 in famous Slovak spa Trencianske Teplice, as the
fifth joint event of the 28°" Symposium ON COMPUTER GEOMETRY
SCG 2019 of the Slovak Society for Geometry and Graphics and the
39" CONFERENCE ON GEOMETRY AND GRAPHICS of the Czech Society
for Geometry and Graphics.

About 55 conference participants from 6 countries — Slovakia, Czech Re-
public, Austria, Slovenia, Poland and Hungary enjoyed rich programme
from a variety of geometry areas. Three invited plenary lectures were
presented. ANDREJ FERKO from Comenius University in Bratislava (Slo-
vakia) gave lecture On specializing triangulations, in which he summarized
results of the common work with Ivana Kolingerova from Czech Republic
on applications of multiple single-criteria triangulations, and demonstra-
ted how to solve any multi-criteria problem by genetic optimization. In-
vited lecture Computing projective equivalences of algebraic varieties pre-
sented by JAN VRSEK from University of West Bohemia in Plzen (Czech
Republic) was devoted to the investigation of the computation of pro-
jective equivalences of rational curves and rational ruled surfaces, the de-
tection of affine transformations between planar curves, and computation
of similarities between two implicitly given algebraic surfaces. ZLATAN
MAGAJINA from Ljubljana University in Slovenia presented lecture entit-
led Automated observation of dynamic geometric constructions in school
geometry about some basic principles of automatic proving in geometry,
in which he raised several important questions and dilemmas on concepts
related to proving and ways of working out and presenting proofs, and
introduced software OK Geometry for automated observation of dynamic
constructions.

Submitted 28 contributed talks from applied and pure geometry, graphics
and education of geometry are published in this proceedings. GeoGebra
Workshop was important part of the conference attended by about 10
practising teachers from primary and secondary schools, who could be-
nefit from interesting presentations of experienced users of this dynamic
mathematical software in school mathematics.

Conference was organized by the Slovak Society for Geometry and Gra-
phics at the Institute of Mathematics and Physics, Mechanical Enginee-
ring Faculty of the Slovak University of Technology in Bratislava, Slovakia.
Social programme included the Grand tour of the monumental Trencin
castle, short tourist walks in the White Carpathians Haluzice gorge, and
conference dinner with musical piano accompaniment.
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We would like to invite you to attend the next joint event of the 29'P
SYMPOSIUM ON COMPUTER GEOMETRY SCG “2020 and the 40*" Con-
FERENCE ON GEOMETRY AND GRAPHICS that will be held again together
by representatives of both societies for geometry and graphics as Czech—
Slovak Conference on Geometry and Graphics in September 2020 in Czech
Republic, in order to keep the good tradition of our common meetings de-
eply rooted in the history.

Bratislava & Plzen, November 3, 2019

Daniela Velichova

chair of SSGG

Miroslav Lévicka
chair of CSGG
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On projective equivalence between rational
algebraic curves

Michal Bizzarri 1, Miroslav Lavitka »®2 and Jan Vrsek >3
@ NTIS — New Technologies for the Information Society, Faculty of Applied Sciences,
University of West Bohemia, Univerzitni 8, 301 00 Plzeri, Czech Republic
b Department of Mathematics, Faculty of Applied Sciences,

University of West Bohemia, Univerzitni 8, 301 00 Plzeri, Czech Republic

Lbizzarri@ntis.zcu.cz, 2lavicka@kma.zcu.cz, 3vrsekjan @kma.zcu.cz

Abstract. In this paper, we will briefly discuss the method for the computation of
projective equivalences between rational curves. This is based on the usage of the
so called osculating form. It turns out that there are only finitely many non-
equivalent curves with the same osculating form. We conjecture the formula
for the number of such curves. In addition, we conclude the paper with a brief
discussion about spatial quartic curves.

Keywords: Algebraic curve, projective equivalence, osculating form, rational
quartic curve

1 Equivalences of rational curves

Let P be the complex projective space of dimension n and write Aut(P™) for
the group of all projective transformations. If X, Y are subsets of P™ then the
set of all transformations mapping X to Y will be denoted by Aut(P™)x y or
simply Aut(lP™)x whenever Y = X. In this paper we will discuss projective
equivalences between two rational curves. Recall that a rational curve C C P"
is an algebraic curve possessing a birational morphism ¢ : P* — C, the so called
parametrization. The curve is said to be non-degenerated if it is not contained in
a hyperplane. In what follows we will consider non-degenerated curves only.
Locally each curve has a formal parametrization

(uzl"rl_’_...7u€2+2—‘,—~-‘,...,U@'L-i_n"’_"')v M

where 0 < ¢; < {5 < .... The point (0, ...,0) is a called stationary point if
some ¢; > 0. (Examples of stationary points are cusps, flexes and stall points.)
We will apply two following two observations relevant to our problem: Curve
of degree d > n in P" has only finitely many stationary points. Stationary
points are preserved under projective transformations. One can easily see that
two curves of degree n in P™ are always projectively equivalent, and thus we
can consider curves of degree greater then the dimension of the ambient space.
Then the problem of finding mappings between two curves is reduced to finding
transformations between finite sets of points on these curves — stationary points.
Instead of approaching the problem directly we will focus on its translation into
the parameter domain.
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Lemma 1.1 Let [s : t] be coordinates on P! and let € : P! — C be a birational
parametrization of the curve C. Then the pre-image of stationary points in P! is
given by vanishing of the so called osculating form
O"E(s,t) O™E(s,t) I"E(s,1)
Ae(s,t) = det , cee ——2 2 2
elst) dsn dsn—Lot’ atn @
Let C, D C P" be two curves, £, ¢ their parametrizations and A¢, A the
corresponding osculating forms. Assume that there exists a projective transfor-
mation ¢ : C' — D. Then the map

Yp=Clogol: P P €)

is an isomorphism and thus it must be a projective transformation. Thus ¢ &€
Aut(P")c p induces the ¢ € Aut(P'). In addition ¢ maps zeroes of A¢ to
zeroes of A¢. The group Aut(PP!) acts on the set of forms in two variables via
(¢, f) — f o). Thus after denoting

Aut(P)a, a, = {¥ € Aut(P) | IANE€C 1 Acop = AA¢}, (D)

we have the inclusion Aut(P")¢,p < Aut(P')a, a.. The idea behind the
computation of equivalences between two curves is that the latter set is rela-
tively easy to compute and it is a matter of linear algebra to find its pre-image in
Aut(P™) ¢, p. The technical details can be found e.g. in [1].

Recall that the birational parametrization of curve is unique only up to an el-
ement of Aut(P;). It follows that the osculating form (which is a polynomial of
degree (n — d)(n + 1), where d is the degree of the curve and n the dimension
of the ambient space) associated to the curve is again well-defined only modulo
an automorphism of P!. Therefore we have the following map

ccpr form in two variables
rational curve of degree d — of degree (n — d)(n + 1)
modulo projective equivalence modulo equivalence of forms

Although it is not a bijection, the above map is finite. In other words there
exists only finitely many projectively non-equivalent curves with the same oscu-
lating form. Their number is predicted by the following conjecture.

Conjecture 1.2 Let d > n be natural numbers and let be given a generic form
in two variables of degree (n + 1)(d — n) then there exists exactly

n

((n+ 1)@= ] #

_ N
i=0 n+i)!

(&)

projectively non equivalent rational curves of degree d in P", whose osculating
forms are equivalent to the given form.
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The partial solution of this conjecture is known for d = n + 1. In this case
the curve is unique and forms of degree n + 1 classify rational curves of degree
n + 1 in P™ up to the projective equivalence. This is a generalization of Telling
theorem, see [2].

In particular projective symmetries Aut(P"™)c of rational curve of degree
n + 1 correspond to the projective symmetries of n -+ 1 points in P! — the
roots of osculating form. From this point of view, the most interesting case
are quartic curves in P3. Recall from classical projective geometry that two or-
dered quadruples of points in 'p! are projectively equivalent if and only if their
cross-ratios equal. Since there exists 24 permutations on four points and only
6 different values of cross-ratio associated to these permutations, we conclude
that a generic spatial rational quartic, possesses 4 projective symmetries (More
precisely Aut(P') = Zy x Zs). Let us specify what we mean by generic more
precisely.

If A is the cross-ratio of a given quadruple, then all the possible values of
the cross-ratios corresponding to permutations of points are

1 1 AoA-1
- —— 1= —.
)\7>\717)\7 )\7>\717 A (6)
There are few exceptions:
A = —1 In this case there are only 4 values of cross-ratio and the group of

symmetries is dihedral group D4. The corresponding quartic is not smooth, but
it has one node. In fact the harmonic cross-ratio implies the existence of the
node and thus two nodal quartics in P? are always projectively equivalent.

A = e3  The group of symmetries of this quartic is isomorphic to group of
euclidean symmetries of the tetrahedron. The quartic is smooth wit coplanar
stationary points. It can be shown that there exists the unique quadric containing
smooth rational quartic in P2. The intersection of the plane containing the sta-
tionary points and the quadric is a conic section with a following extraordinary
property. Projecting the quartic from any of point of the conic section (except of
their four intersection points) produces a planar quartic with three cusps and no
node. Remark that projecting a general quartic we can obtain at most two cusps.

The last situation to mention is the osculating form with multiple roots. Now
it makes no sense to speak about the cross-ratio. Depending on multiplicities we
can briefly summarize the possibilities:

o st degenerates to a cubic,
o 53t singular with a cusp,
o s%(s? —1%) one inflection point,
o 5212 two inflection points.
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On Specializing Triangulations

Andrej FERKO %, Ivana KOLINGEROVA ?2

t Comenius University, Mlynska dolina, 842 45 Bratislava, Slovak Republic
2 West Bohemian University, Univerzitni 8, 306 14 Pilsen, Czech Republic
ferko@fmph.uniba.sk, kolinger@kiv.zcu.cz

Abstract. Triangulation of the given point set in the plane is frequently solved for
diverse applications [Aurenhammer et al. 2013, Chalmoviansky et al. 2001]. Many
criteria have been developed to provide specialized meshes, namely weight and
angular criteria. We study how to compute a triangulation which satisfies more than
one criterion or which contains parts according to several various criteria. We
discuss selected results and applications of multiple single-criteria triangulations
and we demonstrate how to solve any multi-criteria problem by genetic
optimization.

The triangulations and their duals, resulting from natural algorithms, can be
observed at microscale (e.g. fulleren C60), in Chladni patterns visualising sound
waves propagation, and even on the sky in star constellations. The majority of their
edges can be characterised as subgraphs of Delaunay triangulation [Delaunay
1934]. Given n points in the Euclidean plane, the Delaunay edges satisfy the empty
circle criterion when the circumcircle of three of them does not contain another
input point. This way we characterise a Delaunay triangle. The prominent subgraph
od Delauanay triangulation was discovered by a Czech mathematician Boruvka
more than 90 years ago. Today, it is named the Euclidean minimum spanning tree
and it consists of n-1 edges. It is a subgraph of both Dealunay and greedy
triangulation, but its edges do not belong to the most prominent minimum-weight
triagulation. However, six edges from all 719 ones cannot be characterized easily
like 713 Delaunay or 594 Boruvka edges [Ferko et al., 2016]. The single-criterion
triangulation, like Delaunay or greedy, can be generalized to multi-criteria problem
[Kolingerova-Ferko, 2001].

While single-criteria triangulator can directly employ the criterion to compute
edges, the multi-criteria problem formulation requires more flexible stochastic
procedure. We opted for genetic optimization, based on Lawson’s edge flip
procedure. We claim, that this approach is applicable to wide multi-criteria
requirements, e.g. those systematized by [Veltcamp, 1992]. The stochastic
procedures proved their feasibility in solving selected problems in 2D and even in
3D data-dependent triangulations, where even each edge may have another
criterion given by application data.

Our recent research, focusing on Kinetic triangulations [Kolingerova et al.,
2016], proved the superiority of locally minimal triangulation over the Delaunay
one in terms of computational time complexity.

Keywords: Computer graphics, Computational geometry, Minimum weight
triangulation, Delaunay triangulation, Genetic optimization
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Tools for automated hypothesising and proving in
geometry classroom

Zlatan Magajna

Faculty of Education, University of Ljubljana,
Kardeljeva pl. 16, 1000 Ljubljana, Slovenia
zlatan.magajna@pef.uni-lj.si

Abstract. We present the basic elements of automated observation as is
implemented in software OK Geometry, a program for observing dynamic
constructions. We also describe a geometry course for prospective mathematics
teachers, in which students obtained hypotheses using automated observation and
proved them with software a for automated proving.

Key words: dynamic geometry systems, automated observation, software for
automated proving

1 Introduction

Proving facts is, from the perspective of a mathematician, the essence of
mathematics. However, in classroom students and teachers are mostly focused
on understanding concepts, on executing procedures, on solving problems that
do not require a formal proof, and not on argumentative discourses. Yet, proofs
and proving are important in school mathematics. Hanna lists several functions
of proofs in school mathematics, among them are verification and explanation
[2]. In school setting an explanatory proof is more relevant than a mere
verification: it is usually more important to understand why something is true
that knowing that something is true. Understanding proofs requires, besides the
basic understanding of geometric concepts and various procedures, the
understanding of deductive argumentation, the concept of proof, and of some
proving strategies. Geometry was traditionally considered an appropriate
polygon for learning formal deductive proving. The reason perhaps lays in the
dual nature of geometric objects: the formal nature, based on properties
deduced from the underlying system of axioms and theorems, and the
properties that can be visualised from representations of geometric objects and
properties. After Descartes, a third way, based on algebraic representations (e.g.
Cartesian plane, complex numbers), of considering geometry was introduced.
In general, proofs based on algebraic approach, have great verification and
small explanatory power.

Argumentation in (school) geometry is related to various processes: (1)
objects and properties are often represented graphically by a drawing; (2)
properties to be proved or properties to be used in proofs are observed in
a drawing; (3) properties need to be related to definitions and known facts; and,
finally, (4) facts and observations have to be organised into a deductive
structure. Today's technology provides a considerable help on this path.
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Dynamic geometry systems (DGS) allow the representation of geometric
objects and properties as dynamic constructions, on which simple and precise
measurements and numerical checking of properties can be performed. In
recent years also algebra based automated proving methods of geometric facts
were implemented in educational software on personal computers, e.g. Java
Geometry Expert (JGEX) [1],[5]. Finally, let us mention OK Geometry, an
example of a less known software for observation and generating hypothesis
related to dynamic geometric constructions.

Tools and technology are thus becoming part of sociocultural context of
school geometry. The relation between an activity (e.g. school mathematics)
and the tools used in a community of practice (mathematics teachers and
students) is complex and difficult to tackle, for it requires a sociocultural
analysis that takes into account activity structure, social component and
participants' knowledge [4], as well as other factors, ranging from motives of
the activity to historical elements. It is almost impossible to predict the
‘trajectories of usage’ in school setting of potentially relevant tools. Thus, little
can be said about the future role of programs for automated observation or
automated proving in school setting.

2 From automated observation to automated proving

The section begins with a presentation of OK Geometry, a program for
automated observation of dynamic geometry constructions, which is followed
by a short account of a course for prospective mathematics teachers, based on
the usage of a programs: Geogebra, OK Geometry, and Java Geometry Expert
(JGEX).

2.1 OK Geometry

OK Geometry is a computer program designed for observing geometric
properties of dynamic constructions and, consequently, for generating
hypotheses related to a dynamic construction®. The observed constructions can
made in OK Geometry itself or can be imported from a variety of available
DGS programs. The basic idea of automated observation is quite simple [3]. In
a given dynamic construction OK Geometry randomly moves all free points in
the constructions and produces several static instances of the dynamic
construction. The static constructions are numerically checked for a wide range
of geometric properties. A property is considered to be observed if it is
numerically confirmed in each instance of the generated static constructions.
Clearly, this produces hypotheses and not proofs. In order to produce usable

1 OK Geometry is freeware program. The basic module is in Czech, Slovenian
and English. It is available at http://z-maga.si/index?action=article&id=40 .
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and relevant hypotheses from observations OK Geometry uses some additional
mechanisms. We present three of them.

1. Consider the example in Fig. 1: In a right triangle ABC let D be the
midpoint of BC, and let E be the base of altitude from C in the triangle ABD
(Fig. 1, left). A dynamic drawing, made in GeoGebra or some other DGS, of
this simple construction is imported to OK Geometry. The number of properties
observed by OK Geometry depends on the desired level of expertise. The
advanced level, for example, gives rise 62 observed properties. In general,
among the found properties there are many properties that one would not think
of or expect them, some may result in relevant hypotheses, some properties
may turn out to be important steps in proving some fact, and there are also
several trivial properties.

Fig. 1: Observation of a dynamic construction

OK Geometry, for example, observes in the configuration a pair of similar
triangles ABD and BED (Fig. 1, middle). Fig. 1 (right) shows another property
detected by OK Geometry: the circumcircles of triangles BDE and AEC
intersect on the hypotenuse AB. This property perhaps appears artificial, but it
can be profitably used in proving the similarity of triangles ABD and BED.
This example illustrates that OK Geometry when detecting properties considers
besides the objects that are part of the construction also all lines, all circles, and
all conics determined by the points in the construction.

2. Often we want to find properties of configurations that we are not able to
construct. But how to numerically observe instances of dynamic construction if
one does not know how do the construction? To override this OK Geometry
allows implicit and optimisation ‘constructions’, which are not proper
geometric construction but rather solutions found by some numerical method.
A solution obtained in this way can be observed and the found properties may
indicate how to make a proper geometric construction. We illustrate this with
the following task: Given is a triangle ABC and a point D in it. Consider three
circles inside the triangle, each passing through D and touching a different pair
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of sides (Fig. 2, left). The problem is: where to position D so that the three
circles are congruent (Fig. 2, right)?

For some students the construction of the three circles for a given point D
(Fig. 2, left) may present an obstacle that prevents them from analysing the
task. To overcome such situations OK Geometry contains several non-basic
construction commands, e.g. the construction of a circle passing through a point
and touching two lines or a circle touching three given circles. Once the three
circles are constructed we proceed to the next step. We ask OK Geometry to
move the point D so that an additional condition (i.e. the congruence of the
three circles) is met (Fig. 2, right). Actually, the program produces several
copies of configuration with a precision that allows numeric observation.

Fig. 2: An example of implicit construction

3. If the considered problem or construction is related to the geometry of
a triangle, OK Geometry relates the observations to a large database of triangle
objects. The database consists of several thousands of triangle centres,
characteristic lines, circles, triangles and conics and many transformations of
these objects. It may turn out, for example, that an investigated point is
a known triangle centre or that it lays on some lines through known centres or
that an investigated line is tangent to the nine point circle of the orthic triangle
of the studied triangle. To continue the example in Fig. 2, we investigate how is
the point D in the solution (Fig. 2, right) related to the reference triangle ABC.
Fig. 3 (left) is an edited list of properties of the point D with regard to the
database objects of the triangle ABC.
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Triangle centre analysis of D Reference triangle: ABC

Consider cenres<1 -x| 36500 ] More| Eensive | Continue
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Fig. 3: Relating a solution to the database of triangle objects

The observation states that the point D is the insimilicentre of the incircle and
excircle. In other words: we got the hypothesis that the point D lays between
the incentre | and the circumcentre O of the triangle ABC, so that D divides the
segment Ol in the same ratio as is the ratio of radiuses of circumscribed and
inscribed circle of the triangle ABC.

2.2 Anexperience

In order to gain some experience in using programs for automated proving and
observational geometry software we introduced them in the seminar on triangle
geometry. The participants were 33 prospective two-subjects teachers of the
Pedagogy faculty in Ljubljana, Slovenia. They had previously attended a course
in abstract geometry and they had some previous training in using Geogebra. At
the beginning the students attended a short workshop (4 hours) in which they
were shown the basics of algebraic methods of proving geometric statements,
the basics of automated observation with OK Geometry, and the basics of Java
Geometry Expert (JGEX). As part of the seminar each student had to prepare
a seminar report on a topic of triangle geometry and give a short presentation
(15 min) of his work. The usage of various software was inferred from
a document analysis of the students’ reports.

Most, but not all, of the students’ reports were structured in similar way and
contained three elements: 1. A presentation of a new concept (e.g. the contact
triangle of a triangle) and its properties. This part had to contain some rigorous
proofs written in a two column fashion. 2. An exploration of the properties
related to the considered concept. Using OK Geometry the students studied
some configuration related to the presented concept (e.g. how is the contact
triangle related to the tangent triangle). In the report they wrote observations
they considered relevant. 3. Documentation (usually just screenshots) related to
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the automated proof, whether successful or not, in Java Geometry Expert
(JGEX) of a selected property among the observed ones.

The students preferred to use Geogebra for working out constructions and
the related figures in the report. In fact, for drawing/construction purposes
Geogebra was used by 94% of students, OK Geometry by 38%, and JGEX by
22% of students. For the exploration of properties OK Geometry was used by
78% of students, GeoGebra by 30%, and JGEX by 22% of students. Finally,
66% of students included in their report their experience in proving facts with
JGEX. Students had no problems in using the software tools, at least at the
basic level. They were used to make constructions in GeoGebra and preferred
to import them to OK Geometry. Some students found JGEX very attractive not
only for proving but as well for making constructions.

3 Conclusion

OK Geometry is a software for observing dynamic geometry constructions. It
can analyse constructions made by various dynamic geometry systems and it
gives rise to plausible hypotheses. Some of them may be difficult to prove, so
programs for automated proving can be profitably used. Only time will show if
such programs will find their place in school mathematics.

We reported of an example of a course for prospective mathematics teacher,
in which such programs played an essential role. Though proofs, obtained with
programs for automated proving, have little or no explanatory power, the
students appreciated they could produce proofs for facts discovered by
themselves using an observational software. The usage of programs for
automated proving made clear to students that observing is important, but what
counts in mathematics is a proof.
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Abstract. The creation of map projections is highly variable in using various
geometric objects. In this paper we will introduce the use of cycloids, epicycloids
and evolvents in cartographic projections. Jervis’s cycloidal projection, which was
published in 1895, originally uses cycloids as an image of parallels. August’s
epicycloidal projection (1873) refines Lagrange’s circular projection (1779), while
preserves the conformity of map projection. The outline meridians in August’s
projection are displayed in an epicycloid, called nephroid and the other meridians
and parallels are displayed into the evolvents of epicycloids of the same type. The
description of the constructability of the images of the points of the reference sphere
in the Jervis’s and August’s projection and their geometric properties was also
supplemented by a distortion analysis. The aim of comparing the scale distortion was
to show the advantages and disadvantages of using cycloids and epicycloids in
mentioned cartographic projections. Jervis’s cycloidal projection was compared with
using circles in conical projection equidistant on the meridians. The use of
epicycloids and evolvents in August’s projection we compared with an alternative to
using circles in the Lagrange’s projection.

Key words: epicycloid, cycloid, evolvent, cartographic projections, distortion

1 Introduction

The use of geometric objects in map projections is highly variable. In this paper
we will introduce the use of kinetic curves, specifically cycloids, epicycloids and
evolvents, in cartographic projections. Jervis’s cycloidal projection, which was
published in 1895, originally uses cycloids as an image of parallels. August’s
epicycloidal projection (1873) refines Lagrange’s circular projection (1779),
while preserves the conformity of map projection. The outline meridians in
August’s projection are displayed in the two-cusped epicycloid and the other
meridians and parallels are displayed into the evolvents of epicycloids of the
same type.

Cycloid is defined as a trace of a point fixed on the circle, which rolls along
a straight line, epicycloid is defined similarly, but the circle (epicycle) rolls along
a fixed circle. Evolvent (Involute) is the trace of a point fixed on a line and this
line rolls around the given curve. We showed the use of evolvents of cycloid and
epicycloid in the cartographic projection. It holds, that evolvent of the cycloid is
the cycloid and evolvent of the epicycloid is the epicycloid.



28 Abrahamova Andrea, Vajsablova Margita

2 Jervis’s cycloidal and conical equidistant projection

In the middle of 19™ century was devised and employed a new cartographic
projection by a British Colonial Officer, Thomas Best Jervis (1796 — 1857). He
was an officer of the Bombay Engineers and director of the Topographical and
Statistical Depot of the British War Department. His projection was apparently
first published posthumously on July 22, 1895 in Turin by his son. Today this
projection is called Jervis's cycloidal projection. [3]

It was also published a historical map, so-called “New cycloidal projection”.
This map of Middle East (Fig. 1) has the least distortion of any projection until
then known for the range of longitude from 25° to 65° East from Greenwich and
the range of latitude from 30° to 46°. The standard (central) meridian is 45°. The
shape of the geographic network is as follow: parallels are projected as cycloids
and meridians are projected as straight lines.

NEW CYCLOIDAL PROJECTION

Bes

F.@ 3, BOMBAY

Fig. 1: New cycloidal projection of Middle East [7]

The use of cycloids in Jervis’s projection we compared with similar
cartographic projection, conical equidistant, where images of parallels are
circles. Meridians on the both projections are straight lines, in Jervis’s projection
the lengths on the standard meridian are preserved and in conical equidistant
projection the lengths on all of the meridians are preserved.
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2.1 Geometric characteristic and construction of Jervis’s
cycloidal projection

Jervis long studied a method for the most faithful possible projection of the

sphere on a plane surface, and he defined his cycloidal projection, in which the

scale distortion of the area displayed by him is minimized. [4] In this type of

projection the parallels are projected as cycloids and the meridians are straight

lines. The lengths on the central meridian are preserved. The Fig. 2 shows this
projection using the map equations, which can be written in the form:

x=r(V +sinV), 1)
y =—r(l+cosV),

where, r is the diameter of the rolling circle:

R(rx
=—|—-U |
‘ 2[2 j ®

R is radius of reference sphere, U and V are geographic coordinates of the point.

Fig. 2: World and geographic network in Jervis’s projection

Jervis’s cycloidal projection is relatively easy able to construct. The
geometric construction of the geographic network is shown in the Fig. 3. The
first step of the graphic representation of this type of projection is drawing of
a vertical abscissae AB, which is the preserved central meridian with length AB
= 7R, divided into the parts represented the points of parallels labelled B, B,
B, etc. Then we draw the horizontal line CD, passing through the pole A.
Through one of the points B, B’, B”" (point corresponding to the constructed
parallel) we construct the circle k with radius r, according to the formula (2). The
diameter of the circle is represented by the distance of the constructed parallel
from the Pole A. Parallels, which are the curves of latitude, are given by one of
the points B, B’, and B in the rolling of a circle k along the line CD. Meridians
are determined by the corresponding arc of the revolving circle, their images are
the straight lines.
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Fig. 3: Geometric construction of Jervis’s projection

2.2 Conical equidistant cartographic projection

Conical equidistant projection is cartographic projection of the reference sphere
on the conical surfaces unfolded to the plane, where lengths on the meridians are
preserved. Meridians are projected as the straight lines and parallels are projected
as the concentric circles (Fig. 4). For comparison with Jervis’s projection we
analysed the conical projection with map equations [2]:

x=R Z—U cos!,
2 2
y=R £—U sin\i,
2 2

where R is radius of reference sphere, U and V are geographic coordinates of the
point.

®)

Fig. 4: World and geographic network in conical equidistant projection
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2.3 Comparison of Jervis’s cycloidal with conical equidistant
projection

After the calculating the values of scale distortion in Jervis’s cycloidal
cartographic projection, we are compared this values with the scale distortion of
conical equidistant projection. The comparison for the area of the historical map
in Jervis’s projection is in the Table 1. As we can see, the scale distortion of
parallels in Jervis’s projection is from -114 m/km to -550 m/km for the territory
of the Middle East. The scale distortion of meridians in Jervis’s projection is
constant for each meridian, for the territory Middle East is from 45 m/km to
243 m/km. In the case of conical equidistant projection, meridians are preserved,
but range of the scale distortion of the parallels is from -546 m/km to -733 m/km.
It’s follows that the use of cycloids in Jervis’s projection has proved to be more
effective than the use of circles in conical equidistant projection.

Scale distortion of parallels [m/km]
Y
25° 65°
U 30° -114 -235
46° -479 -550
Scale distortion of meridians [m/km] 45 243

Table 1: Scale distortion of parallels and meridians of Jervis's projection

3 Conformal projections by Lagrange and August

Map equations of Lagrange’s circular projection are derived from the
stereographic azimuthal conformal projection and map equations of August’s
epicycloidal is derived from the Lagrange’s projection. Construction image of
the point in August’s projection is realized by its image in stereographic
projection. Lagrange and August formulated their cartographic projections with
the condition of conformity. The use of epicycloids and evolvents in August’s
projection we compared with an alternative to using circles in the Lagrange’s
projection by distortion analysis.

3.1 Lagrange’s circular projection

This projection mentioned in the title is usually called the Lagrange’s projection,
however, after mathematician and astronomer Joseph Louis Lagrange (1736 in
Turin — 1813 in Paris), who generalized Lambert’s concept in 1779. Johann
Heinrich Lambert, a Swiss polymath, was born in 1728 into a Huguenot family
in the city Alsace, which is now in France. In 1772, Lambert published seven
new map projections under the title Notes and Comments on the Composition of
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Terrestrial and Celestial Maps. One of cartographic projections published by
Lambert is now known as Lagrange’s projection. [1]

The Lagrange’s projection is sometimes classified as a polyconic. Outlines
meridians are projected as the two arcs of circles. Parallels and other meridians
are projected as arcs of circles (orthogonal in the intersection points). The
geometric properties of Lagrange’s projection are in the Fig. 5. This projection
is also named the circular.

Fig. 5: Geometric properties of Lagrange’s conformal projection

This type of projection belongs to a large group of orthogonal circular
conformal projections. The map equations have the next form [1]:

Uu =«
Intg E+Z Y
Rsinh——= 2 Rsin—
X = n _ n 4
- yy_ L]
U =« U =«
Intg) —+~ Intg) =+~
2 4 2 4 V
cosh——=——2+c0S— cosh——=——"%+cos —
n n n n

where R is radius of reference sphere, n is constant that defines variant of the
Lagrange’s projection. For stereographic azimuthal projection it holds: n= 1. In
the case of n = 2 the entire Earth will appear in a circle with radius 4R (Fig. 6).
However, this depiction does not give a good concept of the Earth, especially in
the Polar Regions. If we want to preserve the correct ratio of the length of the
Prime Meridian and the length of the Equator, we must choose a constant
n = 3/2 (Fig. 7).
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Fig. 7: Lagrange’s conformal projection with n = 3/2.
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3.2 August’s epicycloidal projection

The author of mentioned map projection is Friedrich W. O. August, who was a
German professor of mathematics as well as his father. He published in geometry
and conformal mappings since his position at the Royal Bavarian Artillery and
Engineering School. In the book Research on the imaginaries in Geometry he
published an essay ,,4 conformal mapping of the Earth in epicycloidal
projection” in 1874 in Berlin. Here was also published the map ,,Degree net of
the whole earth in the epicycloidal projection designed by Dr. F. August”
(Fig. 8). Publisher of this map is Dietrich Reimer and the drawing is by Richard
Kiepert. The main idea that he followed to the discovery of this type of
projection, comes from his friend, Dr. G. Bellermann in Berlin, who has for some
time been concerned with the idea of creating a conformal image of a sphere
inside an epicycloid. [6] One of main advantages is that the shape of the curve
maintained a particularly advantageous limit. August’s projection belongs to
non-classified cartographic projections and it is conformal.

i W Gradnetz der ganzen Erde

rach dor epicydoitiscsen Projoctins

Fig. 8: Historical map in August’s epicycloidal projection [6]
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August’s epicycloidal projection is a conformal, in which the geographic
network is projected in epicycloid and evolvents. Outline meridians are projected
as the two-cusped epicycloid called nephroid, its shape resembles the kidney.
Parallels and other meridians are projected as the evolvents of the same type of
epicycloids. Meridians have two real cuspidal points and parallels are without
real cuspidal points. Analytically, the contour meridian image can be expressed
from equations of epicycloid (nephroid):

x:grcosu —%rcos3U,
3 1 (®)
y=—rsinU —=rsin3U, kde r=2R.
2 2 2

where Ue(-90°, 90°)° is spherical latitude, R is radius of reference sphere. The
map equations of August’s epicycloidal projection are derived from Lagrange’s
projection, and then it holds:

X :ﬁy(3+3x2 —~ yz),
4 6)

Y :?x(& x? —3y2),
where R is radius of reference sphere, x and y are coordinates of the point in

Lagrange’s projection with map equations (4) with n = 2. The geographic
network in August’s projection is in the Fig. 9.

Fig. 9: Image of the geographic network in August’s conformal epicycloid
projection [5]
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August’s projection is relatively easy able to construct from stereographic
conformal azimuthal projection in transversal position [4]. Point P, with
spherical latitude U and spherical longitude V, we construct from stereographic
conformal azimuthal projection of the point Q, its spherical longitude is V/2 and
spherical latitude is U*, where it holds:

. U
smU*:th. @)
The process of constructing image of the point P is (Fig. 10):

1. Circle k with center O and radius R — stereographic projection of the meridian
lied in plane parallel with plane of projection (Pn and Ps are North and South
Pole, AB is horizontal diameter).

2. The point C on the circle k that the angle PNOC are geographic longitude V.
3. The intersection of the chord PNC with the diameter AB is the point D.

4. Circle k" with the center D passing through the poles Py and Ps are
stereographic projection of the meridian with spherical longitude V/2.

5. The point E on the circle k, while the angle 4AOE are equal to the spherical
latitude U.

6. The intersection of lines AE and PnPs is F, from which we construct the
tangents t and ¢ " to the circle k, where T and T are the tangent points.

7. The circle £~ with the center F passing through the points T and 7" is
stereographic projection of the parallel with latitude U* defined by (7).

8. Stereographic projection of the point Q (with spherical coordinates U*
and V/2) is Q" - the intersection of the circles £ (meridian) and £ (parallel).

9. The point K on the line OQ" so that it holds: |OK|=300"|.

10. In the point K we construct the line p so that its angle with line OQ" is 2a,
where: o = 4PnOQ”.

11. The point L on the line PyPs:| OL|=| 00"].
12. The point M on the AB: ML L BL.

13. The point N on the PxPs: MN | BL.

14. We construct the point P on the line p: | KP’|=| ONI.
The point P" is image of the given point P in August’s epicycloidal projection.

August’s projection shows the characteristics of one of the approaches to
mapping in 19™ century. August’s cartographic projection is just one of many
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conformal cartographic projections of that time, which is based on exact
mathematical foundations, but it is not possible to determine type of used
projection surface, and therefore we are talking about unclassified projection.
Nevertheless, the authors of unclassified representations use geometric elements
very widely on maps.

Fig. 10: The construction of a point in August’s conformal epicycloidal
projection [5]

3.3 Comparison of scale distortions in August’s and in
Lagrange’s projection

The both of projections are conformal, therefore the angles are preserved and the
scale distortions are independent to the azimuth.

In the Lagrange’s projection, where image of the parallels and meridians are
circles, after the calculation we expected values of scale distortion listed in the
Table 2. The interval of scale distortion is from -685 m/km to 7309 m/km.

In the August’s projection, where the parallels and meridians are epicycloids
or evolvents of epicycloids, after the calculation we expected values of scale
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distortion listed in the Table 3. The interval of scale direction is from 0 m/km to
7000 m/km. It’s follows that the use of epicycloids in August’s projection has
proved to be more effective.

0° | 10° | 20° | 30° | 40° | 50° [ 60° [ 70° | 80° | 90°

0° | .685 | -684 | -681 | -676 | -669 | -660 | -648 | -633 | -615 | -593

10° | 680 | -679 | -676 | -671 | -664 | -655 | -643 | -627 | -609 | -586

20° | 665 | -664 | -661 | -656 | -648 | -638 | -625 | -610 | -590 | -567

30° | 637 | -635 | -632 | -626 | -618 | -607 | -594 | -576 | -555 | -530
40° | 589 | -588 | -584 | -578 | -568 | -556 | -540 | -521 | -497 | -468
50° | 510 | -509 | -504 | -497 | -486 | -471 | -452 | -429 | -401 | -366

60° | 370 | -369 | -363 | -353 | -339 | -320 | -296 | -266 | -230 | -185

70° | 80 | -77 | 68 | 54 | 33| -6 | 29 | 73 | 126 | 191

80° | 813 | 818 | 835 | 863 | 904 | 958 | 1027 | 1113 | 1218 | 1346

90° | 7049 | 7050 | 7053 | 7059 | 7066 | 7076 | 7087 | 7100 | 7115 | 7132

100° | 110° [ 120° | 130° | 140° | 150° | 160° | 170° | 180°

0° | .566 | -533 | -494 | -446 | -387 | -313 | -221 | -103 | 50

10° | 559 | -526 | -486 | -437 | -377 | -303 | -209 | -89 | 66

20° | 538 | -503 | -461 | -410 | -347 | -269 | -171 | -45 | 117

30° | 499 | -461 | -416 | -360 | -292 | -207 | -100 | 36 | 212

40° | 433 | -391|-339 | -276 | -199 | -103 | 17 | 171 | 371
50° | 325 | 274 | -213 | -138 | -46 | 69 | 212 | 395 | 633

60° | 132 | -67 | 12 | 109 | 227 | 374 | 558 | 794 | 1100

70° | 270 | 365 | 480 | 621 | 794 | 1008 | 1278 | 1622 | 2070

80° | 1500 | 1688 | 1915 | 2192 | 2533 | 2956 | 3487 | 4165 | 5046

90° | 7149 | 7168 | 7187 | 7207 | 7228 | 7249 | 7269 | 7289 | 7309

Table 2: Scale distortion of Lagrange’s projection [m/km]
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0° | 10° [ 20° | 30° | 40° [ 50° | 60° [ 70° | 80° | 90°

0° | o 4 | 15 | 35 | 63 | 101 | 149 | 203 | 282 | 373
10° | 11 | 16 | 30 | 42 | 75 | 116 | 162 [ 222 | 298 | 388
20° | 47 | 52 | 64 | 83 | 113 | 152 | 202 | 263 | 341 | 434
30° | 112 | 116 | 129 | 151 | 186 | 221 | 274 | 339 | 419 | 517
40° | 214 | 218 | 232 | 256 | 288 | 331 | 387 | 458 | 543 | 638
50° | 371 | 377 | 390 | 416 | 453 | 501 | 564 | 638 | 730 | 844
60° | 616 | 622 | 639 | 668 | 708 | 762 | 829 | 914 | 1019|1143
70° | 1029 [ 1035 [ 1055 | 1089 | 1136 | 1197 | 1275 | 1374 | 1491 | 1632
80° | 1859 | 1866 | 1890 | 1937 | 1985 | 2057 | 2149 | 2268 | 2395 | 2556

90° 7000
100° | 110° | 120° | 130° | 140° [ 150° | 160° | 170° | 180°

0° | 482 | 615 | 778 | 976 [ 1221|1524 [ 1904 | 2386 | 3000
10° | 498 | 633 | 796 | 995 [1243| 1548 [ 1929 | 2412 | 3030
20° | 547 | 687 | 822 | 1057 | 1302 | 1619 | 2008 | 2498 | 3124
30° | 635 | 778 | 952 | 1166 | 1426 | 1746 | 2146 | 2648 | 3287
40° | 772 | 924 | 1108 | 1333 | 1606 | 1941 | 2355 | 2875 | 3530
50° | 979 1143|1340 [ 1579 [ 1870 | 2225 | 2660 | 3169 | 3870
60° | 1294 | 1474 | 1689 | 1948 | 2259 | 2635 [ 3091 | 3649 | 4333
70° | 1801 | 2000 | 2238 | 2518 | 2850 | 3246 | 3720 | 4284 | 4961

80° | 2741 | 2961 | 3212 | 3506 | 3845 | 4238 | 4691 | 5213 | 5816
9(° 7000

Table 3: Scale distortion of August’s projection [m/km]

4 Conclusions

In this paper we showed the variability and significance of using kinetic curves
in cartographic projections and interconnection between cartographic
projections. The aim of comparing the scale distortion was to show the
advantages and disadvantages of using cycloids and epicycloids in mentioned
cartographic projections. We compared using the cycloids in Jervis’s projection
with using circles in conical projection equidistant on the meridians. The use of
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epicycloids and evolvents in August’s projection we compared with an
alternative to using circles in the Lagrange’s projection. The analysis of
cartographic projections showed, that the use of cycloids and epicycloids in
Jervis’s and August’s projection have proved to be more effective. Benefit of
using the kinetic curve in cartographic projection is also from esthetic point of

view.
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Abstract. Orthogonal axonometry is a kind of a parallel projection that is
illustrative for displaying relatively small 3D objects. On the contrary, the
principles of constructions in the orthogonal axonometry are more complicated in
comparison with e. g. the Monge projection. There are some texts concerning the
basic principles and properties of the orthogonal axonometry. These texts contain
mostly the static black and white figures that are not enough helpful for the
students which spatial imagination is not developed on sufficient level.
Consequently, the study text, containing the basic principles, properties of the
orthogonal axonometry, the coloured illustrative figures, and the corresponding
figures in the version for anaglyphic glasses, was written. The coloured figures as
well as the figures in the version for anaglyphic glasses were generated from the
dynamic applets created in GeoGebra. Using the dynamic applets together with the
study text seems to be very helpful for the students during their study.

Keywords: orthogonal axonometry, GeoGebra, GeoGebra book, dynamic applets,
coloured illustrative figures, figures in the version for anaglyphic glasses

Klicovd slova: pravoihla axonometrie, GeoGebra, GeoGebra kniha, dynamické
applety, barevné ilustrativni obrazky, obrazky ve verzi pro anaglyfické bryle

1 Uvod

Specialni piipad rovnobézného promitani — pravouhla axonometrie — je
vyucovan pro studenty dvou riiznych fakult Technické univerzity v Liberci, a to
pro studenty Fakulty pfirodovédné-humanitni a pedagogické (FP) v pfedmétu
Geometrie 2 a pro studenty Fakulty uméni a architektury (FUA) v pfedmétu
Deskriptivni geometrie 1.

Existuji knihy, napt. [1] nebo [2], ve kterych jsou sepsany a vysvétleny
zakladni principy a vlastnosti pravouhlé axonometrie, zobrazovani bodd,
pfimek, rovin, rovinnych utvara a zakladnich téles, polohové tlohy v pravouhlé
axonometrii. Vyklad i feSené pfiklady jsou v obou knihach doplnény o
Cernobilé statické obrazky. Obzvlasté v knize [1] se nachazeji piedevsim
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obrazky s findlnimi podobami konstrukei, v ptipadé slozitéjsich konstrukei jsou
mnohdy téméf nepiehledné a nékteré dil¢i konstrukce jsou v nich dokonce
vynechany. Pro méné znalého ¢tenafe byva vyhledavani jednotlivych kroka
konstrukci na zaklad€ uvedeného slovniho komentafe problematické.

Z naSich dosavadnich zkuSenosti je zfejmé, Ze studenti sniz§i Grovni
prostorové piedstavivosti mivaji problémy jak s vyhledavanim jednotlivych
krokd v Cernobilém obrazku vysledné konstrukce, tak i S vytvofenim si
predstav prostorovych situaci pfi pohledu na dvojrozmérny obrazek zobrazeny
V pravouhlé axonometrii. Za timto uc¢elem jsme pro studenty FP a FUA sepsaly
studijni text vysvétlujici zakladni principy a vlastnosti pravothlé axonometrie,
popisujici zobrazovani bodi, ptimek, rovin, rovinnych utvart a zakladnich téles
V pravouhlé axonometrii a komentujici feSeni polohovych uloh v pravothlé
axonometrii. Studijni text jsme doplnily o barevné ilustrativni obrazky
prostorovych situaci, dale o jim odpovidajici konstrukce v pravouhlé
axonometrii. Pfitom barevné ilustrativni obrazky prostorovych situaci vznikly
z dynamickych appletd vytvofenych pro jednotlivé tlohy ve 3D okné programu
GeoGebra. Soucasné byly také v programu GeoGebra pro vétSinu obrazki
prostorovych situaci vygenerovany dynamické applety ve verzi pro anaglyfické
bryle. Statické obrazky konstrukci Vv pravouhlé axonometrii  vlozené
do studijniho textu jsou vysledkem nastaveni 3D okna v kolmém pohledu do
axonometrické primétny. Pro toto nastaveni je uZito pfeddefinovaného tlagitka.
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Obr. 1: Ukazka studijniho textu

Z applett v jejich ptivodni dynamické podobé jsme vytvotily tzv. GeoGebra
knihu s nazvem ,,Pravotihla axonometrie“. A pravé vytvofena GeoGebra kniha

,,Pravouhld axonometrie“ se jevi pro studenty vhodnym pomocnikem pfi studiu
tohoto promitani.
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2 GeoGebra kniha ,,Pravouhla axonometrie*

GeoGebra kniha ,,Pravothla axonometrie* je oproti b&znym tist€nym kniham
interaktivni knihou. Obsahuje devét kapitol, pfi¢emz prvni kapitola je nazvana
»Studijni text”. Jak sdm nazev napovida, v této kapitole je vlozen sepsany
studijni text ve formatu pdf. Dale nasleduje osm Kkapitol obsahujicich
dynamické applety. Pfitom se kapitoly vzdy po dvou témét shoduji ve svych
nazvech, rozdil je pouze ve slové anaglyf, a tedy také ve formatu vlozenych
applett. Kapitoly GeoGebra knihy odpovidaji kapitolam uvedenym ve
studijnim textu a maji po fadé nazvy ,.Zakladni pojmy a principy pravouhlé
axonometrie®, ,,Polohové ulohy®, ,,Zobrazeni rovinnych geometrickych utvard
Vv pravouhlé axonometrii* a ,,Prostorové tlohy*.

2.1 Dvé verze GeoGebra knihy ,,Pravoiihld axonometrie*

GeoGebra kniha ,,Pravothla axonometrie* byla vytvofena ve dvou verzich — ve
verzi pro studenty, viz [3], a ve verzi pro ucitele, viz [4]. Ob¢ verze knih jsou
obsahoveé totozné, tzn. jsou sestaveny z ekvivalentnich kapitol, do kterych jsou
vloZeny analogické applety. Na obr. 2 viz titulni stranu GeoGebra knih.

= GeoGebra

Pravouhla axonometrie

Pravoiihls axonometrie

Autor: Daniela Bimova
Studijni text
GeoGebra knina *Pravouhla axonometrie" je prioritné vytvaen pro studenty studinich obor “Uditelstyi se zam@renim Matematika” a

neuditelského studijniho oboru “Matematika* Fakulty pfirodovécing-humaniti a pedagogické a pro studenty Fakutty umén a
architektury Technické univerzity v Liberci jako elektronicky interaktivnf studijni materidl pro povinné predméty Geometrie 2 a
Deskriptivni geometrie 1.

Zakladni pojmy a prinipy PA

Zakladni pojmy a principy PA_anaglyf

polohové ilohy

Polohové ilohy_anaglyt

Zobrazeni rovinnjch geometrickjch ttvard v

Zobrazen rovinnjch geometrickjch tivard v

Prastorové dlohy

Prostorové tlohy_anaglyf
Obsah

Studijnf text
FP_GE2_Studijni text cast 01_Pravoiihla axonometrie

FP_GE2_Studijni text_cast 02_Pravouhla axonometrie

Obr. 2: Ukazka titulni strany GeoGebra knih

Ob¢ verze GeoGebra knih se od sebe odliSuji pouze applety u fesenych
piikladd. V GeoGebra knize ve verzi pro studenty jsou v ptipadé feSenych
prikladd vlozeny pouze texty zadani piikladii a jsou také zobrazena piislusna
graficka zadani. Vzhledem ke skutecnosti, Ze je v soucasné dobé mozné vkladat
na webové stranky a v navaznosti tedy i do GeoGebra knih dynamické applety
véetné zobrazeni menu, panelu nastroju, vstupniho pole a formatovaciho panelu
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programu GeoGebra, lze nechat studenty feSit piiklady suzitim téchto
zobrazenych nastroji piimo v predpfipravenych appletech.

Na obr. 3 je zobrazen nahled dynamického appletu obsahujiciho zadani
prikladu sestrojeni rovinného fezu hranolu v pravouhlé axonometrii, ktery je
vloZen v kapitole ,,Prostorové ulohy“ v uvedené GeoGebra knize ve verzi pro
studenty.

Rovinny fez hranolu obecnou rovinou_student

Autor: Danila Bimova

NIRRT N - -2
Bl L OO 4N e
. . o
Pravoihla axonometrie

Rovinn§ fez hranoks

Fiklad 7.

Sestrojte fez kokmého hranclu ABCDEFGH s padstavou
ABGD leHci v plderysn 8 s asnou vjBkau v, rovnou p.
Zadén( vizobrézsk

Pravoiihly pohled do axonometrické primétny

b azit rovinu pldonysry T
2obr ezt rovinu nérysy
2cbrazit ravinu bokarsny

zcbrazit rovinu p ez

Obr. 3: Nahled dynamického appletu zadani piikladu vlozeného v GeoGebra
knize ve verzi pro studenty

V GeoGebra knize ,Pravouhla axonometrie“ ve verzi pro ulitele je
v dynamickych appletech piikladi kromé 2D nakresny obsahujici texty zadani
ptikladt a 3D okna s grafickymi zadanimi, ale i feSenimi ptikladi zobrazena
jesté druha 2D nédkresna, ve které je popsano feSeni piikladu. Reseni piikladu
neni po otevieni appletu zobrazeno okamzité. Je provazano s posuvnikem
pojmenovanym ,.krok“ a vlozenym ve druhé 2D nakresnd. ReSeni je zpravidla
popsano kratkym slovnim komentafem doplnénym o symbolické zapisy
konstrukci. Redeni ptikladu se nezobrazi celé najednou, ale objevuje se po
jednotlivych  krocich v zavislosti na pohybovani posuvnikem ,krok®.
V piislusnych krocich se ve druhé 2D nakresné zobrazi bud’ slovni komentat,
anebo odpovidajici symbolicky zapis konstrukce. Ve 3D okné programu se
soucasné vykresli pravé konstruovany objekt, resp. objekty.

Na obr. 4 je znazornén nahled dynamického appletu obsahujiciho Cast
feSeni pfikladu sestrojeni rovinného fezu hranolu v pravouhlé axonometrii,
vlozeného do kapitoly ,,Prostorové tulohy“ v GeoGebra knize ,Pravothla
axonometrie* ve verzi pro ucitele.
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Rovinny fez hranolu obecnou rovinou_ucitel

Autor: Dznielz Bimova

-
Pravoahla axonometrie ~ Regeni:
Rovinnj fez hranoks

Fiiklad 7.

Sastrojte fez kaimEho franclu ABCDEFGH s podsisvou
SBCD leficiv plterysnS s s asnou viEkeu v, rovinau p
Zsténi wzotrizx

krok = 13
-

1. Zrorstruujeme prisednici r pidorysnE promitaci roviny A
orochézeiic hrancu AE, s rovinou pfeau:
1s)r ;v = AB
15 P P=r Npy
1GNGN, = Ty
1) oy My €0y Aoy 1z

2. Body A, B fezu sestrojime jeko prisediky piimky r poisdé
s bransmi AE, BF daného hranol ABCDEFGH
26) AL A =N AE

3.V osové sfinith u ené oscu 0 = g, @ dveiici ik
badd A— A sestrajime obraz ABGD' &yfihelnikové podst
ABCD.

25 1:1=CBNp,

Pravoiihly pohled do axonometrické prumétny
brazitrovinu pldarysny ™
b eitrovinu nérysny
mbrazit rovinu sokorny

Zobrazit rowinu pezs

Obr. 4: Nahled dynamického appletu feseni piikladu vloZzeného
v GeoGebra knize ve verzi pro ucitele

2.2 Dynamické applety ve verzi pro anaglyfické bryle

Vsechny ctyfi vyse vlozené obrazky predstavuji barevné ilustrativni obrazky
prostorovych situaci. Byly vytvofeny ve 3D okné programu GeoGebra pomoci
nastroji pro 3D konstrukce. Aktivovanim vlozenych tlacitek, jejichz funkce
jsou pfeddefinovany piisluSnymi piikazy v zalozce skriptovani, je mozné velmi
snadno a rychle nechat program zobrazit prostorovou situaci v pednastavenych
uhlech pohledu, tj. v pravouhlém pohledu do axonometrické pramétny a
V rovnobézném pohledu, ktery vhodné zobrazuje danou prostorovou situaci.

Pokud by si studenti pti uziti barevnych dynamickych ilustrativnich obrazku
ve 3D okn¢ programu GeoGebra stale jest¢ nedokazali vytvofit predstavy
danych prostorovych situaci a jim odpovidajicich konstrukci v pravothlé
axonometrii, mohou jesté vyuzit dal$ich verzi dynamickych appletd, a to verzi
pro tzv. anaglyfické bryle. Tyto verze byly vytvofeny pro VéEtSinu
vyhotovenych dynamickych appletii. VSechny funkce a kroky v nich uzité jsou
shodné jako u appletd s barevnymi dynamickymi ilustrativnimi obrazky.

Na obr. 5 je znazornén nahled dynamického appletu, odpovidajiciho
dynamickému appletu z obr. 4, ve verzi pro anaglyfické bryle.
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Rovinny fez hranolu obecnou rovinou_ucitel_anaglyf

Autor: Dznicls Bimové

P
Pravoihli axonometrie ~ Regeni:
Rovinnj fez hranoks

Fhikiad 7:

Sestrojie ez kolmého franclu ASCDEFGH 5 podsiavau
ABCD leSici v pldarysnE as dsnouviEkou v. rovinou p,
Zaiéni vizobrézk

ok =17
-

1. Zxonstruujeme prisednici r pdorysné promitaci roviny A
ou AE. s rovinou p fezu

. 8 dvojici odpovidsjicich si
BCT &yilheinkove podstsvy

Pravoiihly pohled do axonometrické priimétny

mbrezitrovinu plsorysny

2ok ezt rovinu nérysny

2obeszit rovinu bokarysny in erem daného hrancks ABCDERGH rovinou ¢ e
3 Gyfheinik ABCD. u kizrého je na Zivi j1E pofiebe urdit

eaczt roviru pes
beazit rovinu p iz b viditainost jeno stan

Obr. 5: Nahled dynamického appletu ve verzi pro anaglyfické bryle

3 Zavér

GeoGebra knihu s nazvem ,,Pravotihla axonometrie* jsme zacaly s vyhodou
uzivat pii vyuce kapitoly pravouhld axonometrie na FP a FUA. Studenti praci
s GeoGebra knihou hodnoti velmi kladné. Do vyuky si sami piinaSeji
elektronicka zatizeni (tablety, notebooky, ...), béhem wvykladu si misto
nahliZeni na statické obrazky ve studijnim textu zobrazuji ptislusné prostorové
situace v dynamickych appletech GeoGebra knihy, coz jim dle jejich slov
pomaha s vytvafenim si pfedstav prostorovych situaci, ale také s pochopenim
nékterych principt zakladnich konstrukei.
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Abstract. In this paper, we formulate a certain modification of the method for an
approximate reconstruction of an inexact planar curve which is assumed to be a
perturbation of some unknown planar symmetric curve. The input curve is given
by a perturbed polynomial and the approach follows results from the recent paper
[8]. The computation is presented on one particular example.

Keywords: Planar algebraic curves, symmetry detection, harmonic polynomials,
Laplace operator, approximation

1 Introduction and motivation

This paper is devoted to the symmetries of planar curves. Being symmetric is
a very useful feature which many real shapes possess and symmetries in the
natural world has significantly inspired people when producing tools, buildings,
artwork etc. One can find many papers devoted to the detection and computation
of symmetries and some equivalences of curves, see e.g. [10,9, 12, 11], or recent
series of papers [1, 2, 3, 4, 5]. The problem of deterministically computing the
symmetries of a given planar algebraic curve was recently studied in [6].

As already stated, many real world shapes exhibit a symmetry. However,
in most cases this symmetry is not perfect but only approximate — which may
happen, for instance, when some input error (or some error caused by numerical
computations) occurs. And, of course, in this situations all subsequent exact
algorithms and scenarios formulated for algebraic curves with symmetries fail.

Recently, see [8], we designed an algorithm for an approximate reconstruc-
tion of an inexact planar curve which is assumed to be a perturbation of some
unknown planar curve. The initial step of the reconstruction algorithm is to find
a suitable approximate centre of symmetry and a particular regular m-gon to
whose group of symmetries the group of symmetries of the curve is isomorphic.
In this paper, we modify the part devoted to finding the approximate centre of
symmetry and present an alternative approach that more closely matches the
original exact algorithm based on computing with Laplace operator.

2 Preliminaries

First we recall selected elementary notions, basic properties and suitable meth-
ods whose knowledge is further assumed.
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2.1 Symmetric algebraic curves in plane

A planar algebraic curve C is a subset of E2 defined as the the zeroset of a
polynomial f(z,y). We will assume that f has real coefficients, is irreducible
over C and dimg C = 1. Any isometry ¢ € Isoy of EZ possesses the form
x — Ax + b, where A € O(R,2) and b € R?. For det(A4) = 1, or = —1 we
speak about direct, or indirect isometries, respectively.

We write Sym(C) for the group of symmetries of the curve C, i.e.,

Sym(C) := {¢ € Isoy; ¢(C) = C}. (1)

It is well known that Sym(C) is finite unless C is a union of parallel lines or a
union of concentric circles. Moreover, if Sym(C) is finite then it is isomorphic
to a subgroup of the group of symmetries of some regular m-gon, m < deg(C).
In what follows we are interested solely in curves with a finite group of symme-
tries. The elements of a finite symmetry group are rotations (all of them with
the same center) and reflections (axes of all of them passing through the same
point).

We recall the following statement, which can be efficiently used to verify
whether ¢ € Sym/(C), see [7] for more details:

Proposition 2.1 An isometry ¢ € Sym(C) if and only if f(Ax + b) = A f(x),
where A =1o0r A = —1.

Then analogously to Sym(C) we can write that ¢ € Sym(f), as well.

2.2 Symmetries of planar curves via harmonic polynomials

We start with recalling the exact approach which has been formulated recently.
For the sake of brevity we will mention only basic steps and a generic scenario;
the reader who is more interested in this topic is kindly referred to [7], where all
proofs and further explanations can be found.

In general, it is not easy to find symmetries ¢ belonging to Sym(C) directly
and one has to apply a suitable computational approach — for instance to find
some new polynomial h(z,y) such that Sym(h) is finite, easy to determine
(i.e., easier then Sym(f)) and Sym(C) = Sym(f) C Sym(h). In [7], a
successive application of the Laplace operator yielding the sequence

fr— Af— A2 f— o — ACf =, )
and followed by the associated chain of groups of symmetries
Sym(f) C Sym(Af) C Sym(A*f) C --- C Sym(A'f) = Sym(h), (3)

was efficiently used for finding such a polynomial h. Application of this tech-
nique is justified by the fact that the Laplace operator as a linear mapping
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A : Rz, y] — R[z,y] defined by

commutes with isometries, i.e., it holds

(Af)od=NA(fod) ©)

A polynomial & satisfying Ah = 0 is called harmonic. By repeatedly com-
puting the Laplacian, cf. (2), in general we come down to either harmonic poly-
nomials, or conic sections, or lines. All situations are discussed in the original
paper, here we recall only the most interesting part, i.e., when one arrives at a
harmonic polynomial h. We recall that if / is harmonic and deg(h) > 1 then
Sym/(h) is finite.

Next, we identify C with R? via z = = + iy <> (,y). For a polynomial
h(x,y) we consider a complex function

where O0,h,0yh represent the partial derivatives of h with respect to x,y.
The standard substitution
1 _ i _
xzi(z—&—z) and y:—i(z—z) @)
allows to write g(z,y) as a complex function g(z,%) in the complex variable z.
Moreover, as h is harmonic then g(x,y) satisfies the Cauchy-Riemann condi-
tions and thus g(z, y) is holomorphic and g(z, Z) does not depend on Z, i.e.,

§
9(2,7) =g(z) =Y bz ®)
3=0

The roots of g(z) yield the singular points of the vector field (0;h, —0yh). As
any ¢ € Sym(h) maps real singular points of the considered vector field onto
real singular points of this field, we finally obtain

Sym(h) C Sym(%), ©

where ¥ = {(1,...,¢(s} C Cis the set of all roots of g(z) (counted with mul-
tiplicity). Symmetries of h(x,y) are then derived from X, resp. ¢(z). For
instance, a possible center of any rotational symmetry of h(z,y) is encoded in
the barycenter of ¥, i.e.,

1 )
ngi;@. (10)
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In addition, using Vieta’s formulas on g(z), one can see that the computation of
the roots is not necessary and we obtain

bé'_l
_ — . 11

Potential candidates for the rotation angle are of the type ,wherem < §+1 =
deg(h).

Similarly, a method how to determine the potential axes of symmetry of
h(x,y) from the coefficients of g(z) is also presented in [7].

3 Formulation of the problem and modified algorithm

In paper [7] exact symmetries of algebraic curves in plane were studied. Re-
cently, this problem has been extended in [8] also to approximate symmetries.
In latter case, the input to the algorithm is a planar curve C which is a pertur-
bation of some unknown symmetric planar curve Cy. This perturbed curve is
described by a polynomial f(z,y) of degree d, i.e.,

C: f(z,y) = Z aiijiyj =0, a;€R (12)
iizd

The perturbed curve C possesses no symmetries. Nonetheless, the original
curve Cy was by assumption symmetric and thus using the exact approach, re-
called in the previous section, one could arrive at a distinguished point p (a
center of any possible rotation, or a point through which the axes of reflection
are passing). The following strategy for approximate reconstruction of Cy was
suggested in [8] (for more details see the original reference):

(a) Determine a point p (the approximate center) and an integer m (the num-

ber of vertices of a regular polygon) from the known perturbed curve C;
(b) Construct a new curve C having the symmetry of an m-gon with the center

at p and being as close as possible to the given perturbed curve C.
(c) Determine all the symmetries of the computed exact symmetric curve C

to obtain the approximate symmetries of the perturbed curve C.

In this paper we focus on the crucial part of the algorithm and formulate an
alternative approach for determining a suitable approximate center of symmetry
p of the resulting curve C, i.e., we will deal with step (a) only. Computing
m is not part of this modified approach — one has to consider all m between
0 and d — 1 and consequently choose the best approximation. The remaining
parts of the original algorithm remain the same. Unlike in [8], we formulate the
approach based on applying a sequence of Laplacians, see (2) — which was the
method used originally in paper on exact symmetries, cf. [7]. From this reason
we assume that the original symmetric curve Cy was transformable by the chain
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of Laplacians to a harmonic curve satisfying (2). As another new contribution,

we solve the problem using complex variables.

First we substitute (7) into f(x,y) and write the polynomial in the following

matrix form

1
z
=2
o\ 2 d z
f(Z,Z)*(l,Z,Z,...,Z )M i (13)
Zd
where M is a Hermitian matrix with a zero submatrix 0(4_¢)x(d—¢), i.€.,
mo,o mio ... TMgo  Mgg1,0 .- Mg Mk410 - Md—1,0 Mdo
mio mi1 ... Mg Mgp1a .. M1 Meg1n ... Mag—11 0
me,o me1 L. me Mey1,e - Mpye 0 0 0
Mey1,0 Megp1,1 -.- Mpgp1e 0 R 0 0 0 0
m m Cee o Mpgs 0 e 0 0 0 0
M= 42,0 42,1 efrz,e : )
my,0 Me1 ... Miy 0 0 0 0 0
Mp41,0 Met1,1 - -- 0 0 0 0 0 0
mg—1,0 Md—11 --- 0 0 s 0 0 0 0
md.0 0 e 0 0 e 0 0 0 0

It is well known that the Laplacian operator works in complex variables as

8 af
Af(z,7) = 4— =L (14)
(2,2) 0z 07’
and therefore we obtain
1
z
- 2 d—2 72
Af(z,2) = (1,z,2%,...,2* )M | # , (15)
where M is of the form
mia (Mg (C+D)mepy .. kmgy  (k+1) Mg (d—1)Mg—11
l ”'L“ . 2 r'nu [(Z+1)‘W/+L/ .. M"rlﬁk.j 0
(C+D)meo .. (L+1)lmgay 0 0 0 0
M, =4 : : : . : : :
kmyo L. klmy . 0 L. 0 0 0
(k+1)mgs1o ... 0 0 0 0 0
(d— 1).171(!,1_0 L. {} l‘J U () 0
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Hence, the chain of Laplacians (2) can be replaced by the chain of matrices

Ml—)Mll—)M2p_>...|_>Mé, (16)
where the matrix M, of a harmonic polynomial of degree k& — ¢ has the form

Omee  PHmesre .. B)mre 0 .0 0
(“G1) metae 0 .0 0 .0
02 : . . . : . .
Mo =40 () e 0 0 0 ... 0
0 0 - 0 o ... 0
0 0 S 0 0o ... O

Let us recall that it was assumed that the sequence is ending with a harmonic
polynomial. Then it is evident that the harmonic polynomial » = A‘f in the
chain (including the values of k, ) can be easily identified from the position
of the block of zeros in the original matrix M. Moreover, we will see that the
center can be decoded from the matrix MM, as well.

Following the previous approach we write polynomial (8) associated to the
harmonic polynomial i given by the matrix M. It holds

oh 1 .
and thus we obtain
oh P i+ l+1 ‘
g(z) = 2* =242 Z < >mi+z+1,ezz~ (18)

=0

Finally using expression (11) we arrive at the center of symmetry of the curve C

-1 (k= —1)(",)Ymu—1, ME—1,0
— ) = — = 19
p E—/7_1 (]{J—e)(];)mk,f kmkl (19)

Next we consider a perturbation of the original symmetric curve. This influ-
ences also the matrix M which contains a block of “almost zeros”, now. Our
goal is to identify this almost-zero-submatrix and set it as zero matrix. This
yields a new curve C described by the equation

mopo .- mg,o P 1
z

[\

C:(1,2,2%...,29 m.e,o m.“ ' 2 =0. (20)
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Fig. 1: Left: A perturbation of an symmetric curve. Right: The closest sym-
metric curve with the guessed center of symmetry from Example 3.2.

Then we continue as in the exact case, determine the point (19) and set it as the
approximate center p.

Moreover, the previous result implies that the perturbation of the center is
not worsen by applying the sequence of Laplacians and it respects the order of
perturbation of the coefficients of the original curve. For this purpose, we recall
some details dealing with the error propagation during computing with inexact
quantities. Consider A = a+ «, B=0b+ , where « < a, § < band |a| <,
|8| < e. Then it holds A 4

’B b

Lemma 3.1 For the error €1 of the centre of the symmetric curve whose coeffi-
cients are given with maximal error € it holds

< (a+Dbe

S @1

and we can formulate.

(Mgey 0 + M1)€

€1 <
2,12
k mi;

~

(22)

The next step of the reconstruction algorithm is to find a suitable symmetric
curve C sufficiently “close” to the given perturbed curve C when the center p of
C is prescribed. From this part, we may follow the approach designed in [8]. In
particular, we construct a basis of all curves of degree d with the rotational sym-
metry of m-gon and with the center of rotation p, and compute the orthogonal
projection of the perturbed cubic to the space spanned by the spanned basis, see
for more details [8].
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Example 3.2 Consider a curve C given by a polynomial with floating coeffi-
cients (which is a perturbation of an unknown symmetric curve), see Fig. 1, left.
f=1.92" +10.2% + 10.2% — 17.92%y? — 35.92%y — 20.12° — 10.1z%y> — 30.1x%y>
—20.z%y + 0.1z — 9.923y* — 39.92%y% — 40.123y% + 0.123y + 10.23 — 18.12%y%>
—90.1z2y* — 199.922 — 239.92%y2 — 149.92%y — 40.22 4+ 10.12y® + 60.12y° + 140.1zy*

+159.92y%4+90.2y%+20.2y+0.124+1.9y 7 +14.5° +44.1y° +80.5*+89.9¢% +60.1y2+19.9y

First, we transform f into the complex representation, cf. (7), and use the
matrix form (13) — for the sake of compactness we display the coefficients of the
matrices with three decimal places only.

0 0.05 +9.951 —25.025 + 5.1 —10. —29.9751
0.05 —9.951 10.05 15. + 14.975i —19.975 4 20i
—25.025 - 5.1 15. — 14.9751 0.05 —0.031 + 0.038i
M = —10. + 29.975i1 —19.975 — 20i —0.031 — 0.038i —0.012
20. +9.988i —15.022 + 15.012i 0. —0.02i —0.017 4 0.034i
5.003 — 7.1 6.006 + 6.1 —0.027 — 0.013i 0
—1. — 1.002i 0.995 — 0.998i 0 0
—0.002 — 0.001i 0 0 0
20. — 9.988i 5.003 + 7i —1.+ 1.002i —0.002 + 0.001i
—15.022 — 15.012i 6.006 — 61 0.995 + 0.998i 0
0. 4 0.02i —0.027 + 0.013i 0 0
—0.017 — 0.034i 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

Next, we find the maximal almost-zero-submatrix in M and create a new one
with this submatrix being exactly-zero.

0 0.05 + 9.95i —25.025 +5i  —10. — 29.975i

0.05 —9.951 10.05 15. +14.9751  —19.975 4+ 20i
—25.025 — 5i 15. — 14.975i 0 0
—10. + 29.9751 —19.975 — 20i 0 0
20. 4 9.988i —15.022 + 15.012i 0 0
5.003 — 7i 6.006 + 6i 0 0
—1. —1.002i 0.995 — 0.998i 0 0
—0.002 — 0.001i 0 0 0

20. —9.988i 5.003 + 71  —1.+1.002i —0.002 + 0.001i
—15.022 — 15.0121 6.006 — 61 0.995 + 0.998i

o

[=NeloloNolo o)

0

[Nl NNl
S O OO OO O
oo oo

Hence we have ¢ = 1 and k =
center of symmetry

and using (19) we obtain an approximate

p = (—0.00069, —1.00405). (23)
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Then projecting subsequently C to all curves with the symmetry of m-gon with
the center p, where m € {2, . . ., 6}, we obtain the best solution for m = 5, see
Fig. 1, right.

4 Conclusion

In this paper, we formulated a possible modification of the recently designed
algorithm for an approximate reconstruction of a planar curve which is assumed
to be a perturbation of some unknown symmetric planar curve. We focused
mainly on the initial step of the original algorithm which lies in determining
a suitable approximate centre of symmetry and a particular regular m-gon to
whose group of symmetries the group of symmetries of the curve is isomorphic.
The method suitably uses, as the algorithm for the exact case, the sequence of
Laplacians. The functionality of the designed scenario was presented on one
example.
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Abstract. In a plane a complete quadrilateral ABCDEF is given.
Consider a set of conics tangent to the lines of the quadrilateral. Locus of
conics foci is denoted as a focal curve. This article deals with some
properties of this curve.

Keywords: Complete quadrilateral, focal curve, conics.

1 Introduction

In a plane a complete quadrilateral ABCDEF is given. Consider a set
of conics tangent to the lines of the quadrilateral. Locus of conics foci
represents a focal curve. This article deals with some properties of this
curve. First mentions about a focal curve (F'C) turned up in articles of H.
Schréter [5] (1872), H. Durege [3] (1872), and again H. Schréter [6] (1873).
The approach of these articles to the curve is projective, approach in this
article is more elementary, see also [1], [2].

2 Properties of the focal curve

Let ABCD be a quadrilateral and let there exist intersections of the lines
(AB,CD) = F and (BC,DA) = E. A necessary and sufficient condition
for a point Fj to be a focus of a conic tangent to the quadrilateral ABC' D
is, that the feet K, L, M, N of perpendiculars dropped from the point F}
to the lines AB, BC,CD and DA lie on a circle or a line (the case of a
parabola). It is obvious that intersections A, B, C, D, E, F' of the side lines
of ABCD lie on the focal curve (F'C), Fig. 1. It can be shown, that if

Fig. 1: Points Fy, F5 and A, B,C, D, E, F' lie on the focal curve

the feet K, L, M, N of perpendiculars dropped from the point F} lie on a
circle with centre S, the same holds for a point F3, the image of reflection
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of the point F} in the point S. Hence the points Fi, F5 belong to the same
conic. The condition of concyclicity of the points K, L, M, N states the
following theorem.

Theorem 1: Feet of perpendiculars dropped from the point F; to the
sides of the quadrilateral lie on a circle if and only if the opposite sides of
the quadrilateral (for example AD and BC') subtend the same oriented
angle from the point F} (for example /DFy A+ /BF,C = 0 = mod 180°).

Proof: Considerations are based on Fig. 2. There are several cyclic quadri-

laterals and hence:
/NMF, = /NDF, =«

ZNAFl = ZNKFl =7
/LCFy, = /LMF, =p
/LBF) = /LKF; =6.

Further:
/DF1A=180°—a —~

LCF1B=180° - —4.

Since the quadrilateral K LM N is cyclic, we can write:

Fig. 2: AD and BC subtend the same oriented angle from the point F}

a+ B+~v+6=180°= 0= mod 180°.
Now, let us consider the sum
=/.DF1A+/BFiC=180°—a—~y+ 180 — 38— 0=

360° — (a + S+ v+ 0) = 180° = 0 = mod 180°.

Although the considerations were based on a particular figure, the theorem
can be easily generalized for an arbitrary point F}, Fig. 2.
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Corollary 1: In complex coordinates A = ay + iaz, B = by + iby, C =
c1 +ica, D =dy +idy, X = x + iy it is possible to express the condition
for a point X to be a focus of a conic

/DXA+ /BXC =0 =mod 180°

by the equation

Im{(A-X)-(B-X)-(C-X)-(D-X)}=0. (1)
This is the equation of the focal curve.

Corollary 2: The equation (1) is the third degree polynomial equation.

Theorem 2: Iet us choose two arbitrary conics tangent to the quadrila-
teral ABCD. I¥note B, B the foci of the first conic and F, I the foci of
the second one. Then the focal curve of the quadrilateral BFiPoF5 is
identical with focal curve of the quadrilateral ABCD. Further, all pairs of
foci of conics tangent to the quadrilateral ABCD are i dentical with pairs
of foci of conics t angent to the quadrilateral B, Fy P Fb.

Proof: Consider foci F1, F5 of a conic tangent to the quadrilateral ABCD.
Due to the Second Poncelet theorem, the following equality holds

/[ DAF) + /BAF;=0= mod 180"

Then, the Theorem 1 implies that the point A is a focus of a conic tangent
to the quadrilateral FyBF,D.

This fact is generalized in the following Lemma.

Lemma: If the points Fp, F> are foci of a conic tangent to a
quadrilateral ABCD, then the points A, C' are foci of a conic
tangent to the quadrilateral F1BF»>D. We express it by symbolic
notation

where F'C means a focal curve.

Returning back to the proof of t he Theorem 2, it is sufficient to show t hat
the theorem holds f or an arbitrary quadrilateral F{ BF;D. Since

FC(ABCD) = FC(F,BF,D) = FC(F\P,FyPs)

the general theorem follows from the transitivity. The focal curve
F C(ABCD) determined by the quadrilateral ABCD is passing through
all six vertices of the complete quadrilateral ABCDEF. By the
assumption it is passing through the foci Fi, F5. Let us denote by P,
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Fig. 3: FC(ABCD) coincides with FC(FyBF>D)

P, the two remaining vertices of the complete quadrilateral F}BF»D.
We will prove that these vertices are foci of a conic, like F}, Fs, which
is tangent to the quadrilateral ABCD. By the Lemma it holds

(F1F,) € FO(ABCD) = (AC) € FC(F\BF,D). 2)

However it is possible to express the quadrilateral Fy BFy D as Py BP,D
and apply the Lemma again

Hence, on the curve FC(ABCD) there lie the following 10 points
A3B307D7E3F3P17P2;F1;F2~

Now let us turn our attention to the curve FC(F;BF,D). By (2) it fol-
lows that the points A, C' are foci of a conic tangent to the quadrilateral
Fi1BF,;D. This is completely analogical to the preceding situation. We
can directly conclude that on the curve F'C(Fy BF;D) there lie 10 points
A, B,C,D,E,F, P, Py, Fy, F5.

The curves FC(ABCD) and FC(F; BF>D) have 10 points in common and
since a cubic curve is uniquely determined by 9 points then the curves are
identical.

We have proved that if a point L is a focus in a case of the quadrilateral
ABCD, then it is a focus in the case of the quadrilateral F1 BFy;D as
well. Now, our aim is to prove that the pairs (L1, La) of foci of a conic
are identical in both cases.

Let one focus L; and the quadrilaterals ABCD and FyBF>D be given.
Denote by Lo or L) the second focus of the conic tangent to the quadri-
lateral ABCD or Fi BFy,D. It follows from the Second Poncelet Theorem
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(see [4], Theorem 2.2.4, p.42) that the angle bisector of L1 BLs is identi-
cal with the angle bisector of ABC, which is identical with angle bisector
of FiBF, and which is identical with angle bisector of L;BLY. Hence,
the points B, L}, Lo are collinear. If we apply the same consideration on
the point D, we arrive at the conclusion that the points D, L}, Lo are
collinear. Thus L) = Lo and the proof of the theorem is completed.

Theorem 3: Let us select an arbitrary point P; on F'C' and an arbitrary
pair of foci Fy, F». Then the angle bisector of the angle F} PF5 is common
for all pairs F}, F5 on F'C.

Proof: Consider a quadrilateral AP, CP,. Then, according to Theorem 2,
the points F, Fy are foci of a conic tangent to AP;CP,. From the Pon-
celet theorem the angle bisector of /F; P F5 is identical with the angle
bisector of / AP, C, which does not depend on a particular choice of Fy Fs,

Fig. 4.

Fig. 4: Angle bisector of F1PF5 is common to all pairs Fi, F» on F'C.

Theorem 4: Let Fi, F> and Py, P, be two arbitrary pairs of foci. Then
the tangent to their F'C at P; is symmetric to the line P, P, with respect
to the angle bisector of ZF} P, F5.

Proof: According to the Theorem 3 the angle bisector of /Fy P Fy is
independent on the particular choice of Fj, F5. Consider the limit case
F5 — P5. Then the angle bisector of P F} P, is identical with the angle
bisector of "angle” P, P, P>, where the "line” P; Py, is the tangent at P;
Fig. 5.
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Tangent at P,

Fig. 5: Construction of a tangent at the point P;

Theorem 5: The centres of conics tangent to a quadrilateral lie on a line
(so called Newton-Gauss line).

Proof: A parabola which is tangent to a quadrilateral ABCD has one
focus Pr at infinity. On the basis of the concept of limit, let us consider
the angle bisector of "angle” F} P;F5. The angle bisector is

e parallel to the parabolas axis,
e passing through the centre of the segment Fy Fy,

e common for all pairs foci of the focal curve (Theorem 3).

From this the Theorem 5 follows.
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1 Uvod

V tomto piispévku chceme sezndmit s novymi vyukovymi materidly pro
predmét Konstruktivni geometrie na FAST VUT v Bmé. Jednd se o sbirku
feSenych prikladii na téma Topografické plochy, vytvofenych v programu
GeoGebra. Piiklady je moZno najit zde: https://math.fce.vutbr.cz/studium.php

2 Topografické plochy —uvod do problému

Ve stavebni praxi se setkdvame s problémem, jak propojit stavebni objekt
s terénem. Jako zjednoduSeny obraz zemského povrchu (terénu) vyuZzivame
topografické plochy — terén je znazornén vrstevnicemi. Vrstevnice jsou obecné
kiivky. V ptipad€, ze terén si lze zjednoduSené piedstavit jako rovinu, jsou
vrstevnice primky. Zakladna stavebniho objektu je ttvar, ktery lezi ve
vodorovné nebo §ikmé roviné. Rovinu zdkladny pak pomoci vykopovych ¢i
nasypovych rovin ptedem daného spadu spojujeme s topografickou plochou a
sestrojujeme priseénice vykopovych a nasypovych rovin s topografickou
plochou.

2.1 Typy prikladi, které jsme Fesili

Vsechny vytesené piiklady jsou shrnuty do knihy v GeoGebra. Stru¢ny ptehled
prikladi, které jsme tesili:

vodorovna + $ikma cesta, vrstevnice kiivky

kruhové hiisté, vrstevnice primky

vodorovna cesta + parkovisté, vrstevnice piimky

vodorovna ploS§ina, vrstevnice kiivky

kruhové hfisté + Sikma cesta, vrstevnice kiivky

arwbnE
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plosina + vodorovna cesta, vrstevnice kiivky

plosina + klesajici cesta, vrstevnice kiivky

plosina + vodorovna cesta +Sikma cesta, vrstevnice piimky
ktizovatka, vrstevnice kiivky

© © N>

Materialy

Topografické
plochy

KNIHA

topografické plochy

.o

G2 Sdilet odkazem

Obr. 1: Kniha v GeoGebra

2.2 Krokovani konstrukce

Piiklady jsme feSili v programu GeoGebra. Velkou vyhodou GeoGebry je
moznost rozdélit vyslednou konstrukci do nékolika krokti a jednotlivé dilci
konstrukce zobrazovat postupné pomoci nastroje posuvnik. Pro studenty je
takto vyfeSeny piiklad prehlednéjsi a snadnéji pochopitelny. Pro lepsi orientaci
v dil¢ich konstrukcich jsme také vyuzili dynamické barvy — konstrukce, ktera
se v daném kroku objevuje, je provedena cervenou barvou (jak ukazuje obrazek
na nasledujici strané)
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a)

b)
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Do terénu daného wstevnicovm pidnem, umistéte vodorovnou cests
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Obr. 2: Vodorovna a klesajici cesta

a) zadani b) jeden z krokt konstrukce c) vysledek
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2.3 Dalsi moZnosti GeoGebry

Kromé& krokované konstrukce je mozné v GeoGebie sestrojit prostorovy
obrazek, ktery lze otacet. Pochopeni daného problému je tak jesté nazornéjsi a
jednodussi. Toho bychom chtéli vyuzit pti tvorbé dalSich materiald.

6180 dino gratchy

\ L LT T

Obr. 3: Vodorovna cesta (feSeni a prostorovy obrazek v GeoGebra)

3 Zavér

Piispévek ukazuje moznosti vyuZiti programu GeoGebra pro tvorbu vyukovych
material®, které pouzivame pii vyuce Konstruktivni geometrie na FAST VUT
v Brné. Tyto materialy jsou dostupné na strankach naseho ustavu a mohou je
tedy vyuzit i studenti nebo vyucujici na jinych skolach.

Literatura
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Abstrakt. The paper is based on the contribution to the GeoGebra
workshop, part of the Slovak-Czech conference on geometry and graphics. Its
aim is to introduce the use of GeoGebra, the free dynamic software for
teaching and learning mathematics, to bring a historical mathematical topic
into the classroom in a beneficial way. We will particularly deal with a
method of the use of an oblique strophoid to trisect an angle, discovered in
the second half of the 19th century by the Czech grammar school
mathematics teacher Josef Rudolf Vanaus.

Keywords: Trisection, strophoid, GeoGebra, locus of points.

Kli¢ovd slova: Trisekce, strofoida, GeoGebra, mnozina bodu.

1 Uvod

Piispévek je inspirovan dvéma piispévky Josefa Rudolfa Vanause, pro-
fesora na gymndziu v Ji¢iné, mimo jiné jednoho ze zakladateli Jednoty
ceskijch matematiki a fyziki, které publikoval v Casopise pro péstovdni
mathematiky a fysiky; ¢lankem o vyuziti sikmé strofoidy k trisekci thlu
[6] a zaddnim geometrické ilohy pro ¢tendre tohoto ¢asopisu [7]. Obsahy
piispévkil jsou predstaveny s vyuzitim volné dostupného programu pro
studium a vyuku matematiky GeoGebra (www.geogebra.org), s ohledem
na mozné pouziti ve vyuce matematiky.

Josef Rudolf Vanaus, narozeny 2. kvétna 1839 v Komaroveé u Sobéslavi,
patfil mezi ¢tyri studenty Karlo-Ferdinandovy univerzity v Praze, ktefi
ustavenim Spolku pro volné predndsky z mathematiky a fysiky v roce 1862
polozili zdklady dnesni Jednoty ceskych matematiki a fyzikd. Veétsinu své
kariéry pusobil jako profesor matematiky na gymnéziu v Ji¢iné. Zemfiel
16. ledna 1910 v Praze. Svymi ¢lanky nebo zaddnimi tloh pro Ctenéie
piispival do Casopisu pro péstovdni mathematiky a fysiky [1], ktery Jed-
nota vydavala v letech 1872 az 1950.

Cilem ¢ldnku je pfedstavit, jak muze byt soucasna interpretace histo-
rického tématu za pouziti vhodného software, konkrétné programu Geo-
Gebra, pouzita ve vyuce matematiky. Jeho dalsim, neméné vyznamnym,
cilem je pripomenuti osobnosti Josefa Rudolfa Vanause, vyrazné postavy
historie ¢eské matematiky, od jehoz narozeni letos uplynulo 180 let.
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2 Uloha 36

V roce 1902 byla v sekci tloh k samostatnému feseni 3. ¢isla Casopisu
pro péstovdni mathematiky a fysiky uvedena pod cislem 36 nésledujici
iloha zadana J. R. Vanausem: ,Polomérem AB opsany jsou z bodu A, B
kruhové oblouky protinajici se v bodé C. Ustanoviti jest v oblouku AC
bod M a v oblouku BC bod N tak, aby M N bylo rovnobézno k AB, a
uhel M AN aby rovnal se danému ostrému thlu®, [7], viz Obr. 1.

V patém ¢isle téhoz roc¢niku ¢asopisu byli uvefejnéni tii ispésni fesitelé;
Bohuslav Hostinsky, Karel Rychlik a Bohuslav Zavada, studenti stfednich
kol ve véku mezi 12 a 17 lety, viz [8]. Slusi se poznamenat, ze se jednalo
o tfi budouci vyrazné osobnosti naseho naroda. Vsichni dosli k zévéru, ze
cesta k Teseni tulohy vede pres trisekci uhlu. Vsichni také védéli, ze tato
tloha neni eukleidovsky sestrojitelné. Hostinsky se Zavadou tim své Feseni
skoncili, Rychlik jesté rozpracoval provedeni trisekce pomoci hyperboly.
K poznatku o nutnosti uplatnéni trisekce se kazdy ze studentu dopracoval
jednim ze dvou postupt lisicich se od sebe pouze oznacenim pro feSeni
rozhodujicich uhla, viz Obr. 1. V postupu na Obr. 1 vlevo vede k cili se-

Obr. 1: Uloha 36; dva pifstupy k jejimu fesenf

strojeni ithlu 8 = /BAN. Z obrazku ziejmym zpusobem vyplyva, ze pro
jeho velikost plati § = 60° — %a. V piipadé zachyceném na obrazku vpravo
jde o thel v = /BAM, pro ktery plati v = 60° + %a. Po predstaveni
uspésnych teSeni je na str. 474 casopisu uvedena nasledujici redakéni
poznamka: ,,Ijloha jest stupné tietiho; rozdéleni ihlu na 3 stejné dily nelze
— jak znamo — vykonati pfesnou geometrickou konstrukei uzivajici pouze
piimek a kruznic. K c¢elu tomu vymysleny byly téz rozmanité kiivky
vyssich stupni; o jedné z nich pojednéava prof. Dr. Josef Vanaus v ¢lanku
Trisektorie (tohoto Casopisu roénik X. str. 153). Viz téz Lostak, Pifspévek
ku trisekci thlu (Casopis, roénik XIV., str. 38)“, [8]. Vanaus v uvedeném
¢lanku navrhuje k trisekci ihlu vyuzit algebraickou kiivku tretiho stupné,
nyni zndmou jako sikm4 strofoida [5]. Jedna se o zcela origindlni postup,
ktery ani dnes, téméf 140 let po publikovani Vanausova ¢lanku, nepatii
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mezi obecné zndmé metody, viz napf. [4]. Lostak pouzil kiivku, ktera byla
afinni s Descartovym listem, kiivkou, jejiz vyuziti k trisekci tthlu bylo v té
dobé jiz znamo. Touto rovnéz pozoruhodnou metodou se zde ale zabyvat
nebudeme. Za zminku viak urcité stoji skuteénost, ze J. Lostak byl téz jiz
od roku 1862 ¢inny ve Spolku pro volné predndsky z mathematiky a fysiky.
NeZ se zaéneme vénovat Vanausové metodé trisekce, pojd me se podivat,
jak muze byt postup feseni tlohy 36 ovlivnén pouzitim dynamického geo-

€ Prem kol 105gh - o x

File Edit View Options Tools Window Help Sign in

Y|P 2B o) P NIEIES

3

8
> Velikost zakladny [AB|=a
a =45
.

Zadany uhel $MAN=a

Trojuhelnik BNA je rovhoramenny
Velikost ramene |BA| = [NA| = a

Uhel $ABN = 4BNA = (180°-af)2=a+al M
Uhel $ABM = 4BAN = a1 = 60° - (2a/3)

Obr. 2: Dynamicky nécrtek feseni Ulohy 36

Input:

metrického software, v nasem piipadé GeoGebry. Na Obr. 2 vidime néhled
materialu, kterym doprovodila své feSeni jedna studentka Pedagogické fa-
kulty JU. Ulohu vyresila analogicky s vySe uvedenymi postupy dobovych
uspésnych fesitel, GeoGebru pak vyuzila k vytvoteni dynamické ilustrace
svého feSeni.

Obr. 3: Dynamické geometrické feseni Ijlohy 36

Obr. 3 pak ptinasi ilustrace ryze dynamického piistupu k feseni tlohy,
ktery tézi z moznosti dynamického geometrického software. Zde je cilem
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nalezeni spoletného bodu mnoziny stieu S ptricek M N, které jsou z bodu
A vidét pod thlem «, a osy usecky AB. Tato ,dynamickd“ interpretace
tlohy 36 okamzité indukuje otdzku na podobu mnoziny stfedi uvedené
pricky. Jak vypadd kiivka, jejiz ¢asti tato mnozina je? Jakou mé rovnici?

» cas X [» Nakresna X

e6:=Zjednodusit(n_1"2+n_2"2-r'2)

< ebi=n+m—r?

E1:=Eliminovat({e2.e3 e e5.e6.e1}.{m_1.m_2.n_1.n_2k})

o+ El:={16x"a?-32xra? +8x'?a? +16 X Pa? — Txr*a?— 2 x P a® +1° a2 + 48 x" y? a®
Eq1:=Substituce(Prvek(E11) {r=1,a=u})

656 656 1968 1968 1312 1312 2624 328
X+ o+ 2yt xty? — o — xy'— Xy 4

- Eali=g 25 T as 25 25 X7 2% 25 2

Eq2 =RozKiad(Eq1)

“ E@2 = (A2 +4y2-1)-

164 x4 — 328 x? 4328 x2 y? 4 123 x2 — 328 x y? + 32 x + 164 y* — 41
25

eq1: Prvek(Eq22) = 0

® |5 eql:164x*+164y*+328x7y2 —328° —328xy?+123x> —41y? +32x+40y—16 =0

Obr. 4: Mnozina stfedt piicky M N uzitim néstroju symbolické algebry a
dynamické geometrie programu GeoGebra

Na tyto otazky lze snadno odpovédét pii vyuziti kombinace néstroju Geo-
Gebry pro dynamickou geometrii a symbolickou algebru, z nichz ocenime
predevsim funkce Eliminovat a Rozklad pro feSeni a Upravy pfislusné
soustavy polynomickych rovnic. Jak vidime na Obr. 4, vysetfovanou kiiv-
kou je tzv. Pascalova zavitnice, téz zvana limacon [3].

3 Trisektorie J. R. Vanause

J. R. Vanaus se ve svém clanku [6] vénoval zevrubnému zkoumdéni al-
gebraickych kiivek 3. stupné, které jsou ddny rovnici ve tvaru Az3 +
By? + Cxy? + Dyx? + Ex? + Fy? + Gay = 0. V&ima4 si zvlastni jedno-
duchosti tvaru této kiivky, které dostava pro urcité vztahy koeficientu
A, B,C,D,E,F,G za podminky, ze A = C,B =1 a E = —F. Dostava
se tim ke kfivce, kterou dnes nazyvame sikma strofoida. Vanaus ovSsem
ve svém ¢lanku tento pojem nepouziva. Protoze odhali moznost vyuziti
kiivky pro trisekci 1hlu, nazyva ji trisektorie a definuje ji nédsledujicim
zpusobem jako mnozinu bodu dané vlastnosti, viz Obr. 5: Opisme libo-
volngm polomérem r kruznici a ved'me primér OA. Prung bod priméru O
budiz pocdtkem souradnic pravouhlijch a OA osou usecek. Bodem A ved'me
v libovolném uhlu o k ose X maklonénou secnu. Paprsky z bodu O k se¢né
vedené protinaji kruznici. Jeden z nich budiz OB, jenZ protind kruznici
v bodu D. Prenesme pokazZdé isek paprsku mezi kruznici a secnou na dru-
hou stranu prislusného paprsku, tedy uciime DM = DB. Bod M jest
bodem trisektorie, anat souvislost viech takto utvoreniych geometrickych
mist poddvd tuto krivku.
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» CAS X

1 a:=RovniceMnozinyBodu(M,B)

® - oai= 4+ 3447 —dxy?—6xy+3y° —dy2 =0

[ [hd

» Nakresna

Obr. 5: Sikm4 strofoida — Vanausova trisektorie a vypocet jeji rovnice v
GeoGebre zadanim piikazu RovniceMnozinyBodu(M,B)

Obr. 6: Trisekce thlu strofoidou

Rovnice Vanausovy trisektorie (tj. sikmé strofoidy) je a(y?(2r + x) —
22(2r — 2)) = y(y? + 2% — 4rz), kde a = tan a. Vypocet rovnice pomoci
funkce RovniceMnozinyBodu programu GeoGebra pro konkrétni hodnoty
parametru r, a je zaznamenan na Obr. 5. Uziti této kiivky k trisekci thlu,
popsané Vanausem, je piimym dusledkem uvedené definice. Ukdzeme si
to pomoci dvou nékresu na Obr. 6. Obrdzek vlevo nam poskytuje celkovy
pohled, korespondujici s Obr. 5, kterym jsme predmétnou definici ilustro-
vali. Ten vpravo potom piinasi detailni popis prvki, které Vanaus pouzil
k dukazu svého tvrzeni. Metoda trisekce ,,jeho“ kiivkou je zaloZena na
skutecnosti, ze ithel ZHOM je tietinou ihlu /HOA. Dukaz plyne z Obr. 6,
vpravo. Ze skutecnosti, ze velikost vnéjsitho thlu trojihelniku je rovna
souctu jeho protilehlych vnitinich whlu, je totiz ziejmé, ze a+2x = a+y,

tj. y = 2x. Protoze thel u je roven souctu x + y, je ziejmé, ze x = %u
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4 Zaver

Je velmi pravdépodobné, ze predstavend metoda trisekce thlu uzitim
$ikmé strofoidy je jedineénym Vanausovym poznatkem. Z pohledu dnesni
geometrie se ale nejednd o zddny prilomovy objev. Jinak tomu ale muze
byt z hlediska vyuky matematiky. Takovéto casem zavaté poznatky, spo-
jené s vyraznymi osobnostmi z historie matematiky a zalozené na zna-
lostech elementarni matematiky, mohou, vhodné uchopeny, napiiklad po-
moci matematického software, pfinést do vyuky novou aplikaci skolni ma-
tematiky, spojenou se zajimavym ptribéhem a mnohdy také s novymi ,,ob-
jevy“. S nékterymi historickymi tlohami mohou byt navic spojeny do-
sud nevyfeSené otazky, jako je tomu i v tomto piipadé. V zavéru clanku
[6] Variaus uvadi, ze se mu podafilo sestavit ,piistroj zcela jednoduchy*
s jehoz pomoci lze vyse popsanou trisekci realizovat. Tento pristroj, tfeba
jenom v podobé nacrtku, se ale nezachoval. Jak asi vypadal? Dovedli
bychom sami navrhnout takovy piistroj? A tfeba vytisknout na 3D tisk-
arné? To vSe ndm soucasné digitalni technologie dovoluji. Sta¢i mit jenom
ndpad. Nevypadal Vanausuv piistroj tfeba takto: [2]? Je vsak tento model
opravdu ,zcela jednoduchy“?
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Abstract. We recall a construction of Schubert cells and show on
tractable examples how to wuse it for computation of intersection
problems which look difficult to solve. Basic geometry and topology of
Grassmannians which are intimately connected to the Schubert
calculus is described.
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1 Introduction

Intersection is a basic operation in mathematics. Algebraic geometry
deals with intersections on level of adding polynomial conditions over
certain ring of coefficients. There is a particularly useful structure for
computation the results of the intersection in theory and practically also
in many applications.

Certain patterns repeat in problems of intersection. The change of
coordinates, even rational equivalence of intersected varieties does not
change the results. This leads to the Chow ring of a space. For intersection
problems in projective space, Grassmannians play an important role.

Hermann Céasar Hannibal Schubert (1848-1911) — a gymnasium teacher
was able to compute many complicated enumerative problems with cal-
culus which was not well founded in his days.

David Hilbert included the clarification of this concept as the 15th
problem in his famous list of challenges in mathematics to be solved during
the 20th century. The finally accepted version of the calculus appeared in
the 70th. Many new concepts have been initiated along the way.

2 A problem of common chords of curves

Since there is not enough place for a detailed study of the whole story, we
present the concepts on an example.

A chord of a curve is a line intersecting the curve in two different
points. In general, the intersection multiplicity of the line with the curve
is at least two.

Problem: Let C, D be two smooth curves of degree d and genus g in
P™(C). How many common chords do they have?

We start with all secants of the curve C' denoted by 2(C) C G(1,n),
where G(1,n) represents all lines in P™(C) (we describe Grassmannians
more precisely in the next section). Let p,q € C, p # q and pq be the
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line defined by the two points in  5(C). Consider the mapping 7: CxC —
G(1,n) defined so outside the diagonal. Take an algebraic closure of the
image of the 7 (e.g. tangents of C are added). Clearly, the (complex)
dimension of the image is 2.
Solution: Find the structural elements and their number in ¥2(C) N
2(D).

The solution structurally heavily depends on n and for n = 3, there is

a number of common chords for curves.

3 Grassmannians

An important role is played by varieties parameterizing all linear varieties
of dimension k in projective space of dimension n. It is called Grassman-
nian. We will work over the field of complex numbers on.

3.1 Basic properties of Grassmannians

Let G(k,n) denote the projective variety of all projective k-spaces in pro-
jective n-space over C. Alternatively, one can consider as well all vector
spaces VF+1(C) in V"*1(C) and denote it G(k + 1,n + 1).

In order to obtain some structural information about Grassmannian
(named after Hermann Grassmann), one picks a base €p,..., &, in the
underlying vector space. A k + 1-dimensional subspace is given by k + 1
linearly independent vectors, which coordinates can be written in the
(k+1) x (n+ 1) matrix with respect to the picked base. If the first k+ 1
columns of the matrix are linearly independent, we can reduce it to

1 0 -+ 0 aokp1 -+ aon

0 0 - 1 appyr - Gin

The coeflicients a;; in the matrix are free and all such matrices form an
affine space with the dimension (n — k)(k 4+ 1). Since any k + 1 columns
can be those linearly independent, one can cover G(k + 1,n + 1) with
maps, each of which is isomorphic to affine space with the dimension is
(n—k)(k+1).

3.2 Grasmannians as special exterior forms

Considering exterior algebra A*+1(V"+1(C)), the elements of the Grass-
mannian G(k + 1,n + 1) are all elements of the form

To N ... N\ Ty

in some base.
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Since the exterior algebra is also a projective space of the dimension
(1) — 1 and the mapping m: V — A*F2(V"+1(C)) given by
T wAU

has the kernel of the dimension k + 1, and its image of the dimension
at most n — k. Hence, the corresponding matrix of this mapping has
all minors of order n — k 4+ 1 zero. Such relations can be used to define
Grassmannian as an algebraic variety. The ideal of the variety can be
generated by quadratic Pliicker relations. (One knows G(1, 3) in classical
geometry as the space of all lines in P3(C) and the Pliicker cone defined
by woiwas — woawis + woswiz = 0).

This topic is extensively studied and many facts can be found e.g. in
[2].

4 Rational equivalence of algebraic varieties

Intuitively, we see that moving intersecting varieties slightly does not
change the structure of the intersection. The situation is not clear in
case of singular situations. The notion to be used here is rational equiv-
alence of varieties. In algebraic geometry, it is a convenient replacement
of intuitive continuity of the intersection.

Two algebraic varieties Vp, Voo C P"(C) are rationally equivalent if
there is a rational mapping ¢: W — P(C) such that W C P"(C)x P'(C),
¢~1(0) = Vo and ¢~ (00) = Vi

An example of rational equivalence of regular and singular conic sec-
tion in projective lane can be computed by the mapping

é: Pt — P? x P (s,t) = zy + t2°.

When t = 0 one gets lines, for ¢ # 0, one gets a regular conic section.
The following theorem provides a tool of computation for intersection.

Theorem 1 (Chow ring) The classes of all projective algebraic vari-
eties under the relation equivalence Rat(X) in X = P™(C) form a ring with
operations of formal sum with integer coefficients (i.e. ayay + -+ -+ agag,
a; € Z also called degree of a;, where a; is a class of the rational equiva-

lence), and intersection (i.e. [a.b] = [aNb]). Formally,
A(X) = Z[X]/Rat(X) = P Zi[X]/Rat(X).
kEZ

One can replace projective space with a general algebraic variety X,
even scheme. The computation of the Chow ring in general is not easy.
We will use the case X = G(k,n), where the ring is known.
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5 Schubert calculus
‘We show the way of computation with Schubert subvarieties in a particular
case of lines in P3(C) and then give a brief sketch of the general case.
5.1 Schubert varieties in Grassmannian G(1, 3)
Consider a projective flag Vo € Vi C Vo C V3 in P3(C) with dim V; = 4,
1=0,1,2,3 and the following algebraic varieties.
o All lines intersecting the fixed point Vj denoted 33 g.
e All lines intersecting the fixed point V contained in the plane V5
denoted X ;.
e All lines intersecting the fixed point Vj contained in the line V;
denoted ¥ .
o All lines intersecting the fixed line V; denoted X1 .
e All lines intersecting the fixed line V; contained in the plane V5
denoted ¥ ;.

o All lines denoted X .

Since any complete flag can be rationally transformed to any other
complete flag (just think of projective linear mapping), these varieties
represent some classes in the Chow ring of G(1,3). For ¥, , its class in
the Chow ring is denoted by o,4. It is not so difficult to see that the
codimension of ¥, is a + b in G(1, 3).

5.2 Intersection table for Schubert varieties

For the sake of shorter notation o, = 04,0. The table of multiplication is
as follows.

2

o] = 011+ 09,
01011 = 0102 =021,
01021 = 0272,

2 _ 2 __

01,1 = 02 =022,
01,102 = 0.

Try to prove these relations by devising special situations. The complete
proof requires a longer computation. It can be found e.g. in the book [1].

As a demonstration of the method, a classical problem is shown: How
many lines intersect 4 lines in a generic position in P3(C)? Taking the
class o7 of lines intersecting a fixed line, the answer is

deg(o}) = deg((o11 + 09)?%) = deg(ail + 2071102+ 03) = deg(202,2) = 2.

A geometric approach using specialization is available. It is enough to
take two pairs of intersecting lines /1 N ¢3 = a, resp. {3 N ¢, = b. Each
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pair is spanned by a plane aqs, resp. a4, which are not the same. Then,
two lines intersection all the lines are ab and a2 N a34.

5.3 Schubert varieties in general Grassmannian

We show the general approach on a vector space approach. Consider
G(k,n). Fix a complete flag 0 C V4 C -+ C V1 C Vj,, with dimV; = 4,
i=1,...,n. Takea = (ay,...,a;) satisfyingn—k > ay > as--- > ap > 0.
Then

¥ ={WeGk,n): dm(V,—gti—a, "W) >1i}
Similarly, we omit zeroes at the end of a, when denoting ¥ or o . A
codimension of ¥ in G(k,n)isa=a; + -+ aj.

Intuitively, the intersection of a k-plane with V,,_k1;_q, is a; dimen-
sions earlier than is the generic case. Using matrices and taking basis such
that the fixed flag is V; = [é1,...,8&],i=1,...,n, we get e.g. for G(4,9)
and Y3921 a matrix

* x x 0 0 0 0 0 O
* x x x x 0 0 0 0
* * % * x x 0 0 0
¥ % x *x *x *x x x 0

The space V5413 has intersection of dimension 1, the space V542_9 has
intersection of dimension 2, the space V543_9 has intersection of dimension
3, the space V5141 has intersection of dimension 4. It is always the first
index in the fixed flag with the intersection of the dimension ¢ for all
considered indices 1.

5.4 General rules of multiplication of Schubert classes

Multiplication rules are more complicated in general case. For particular
classes, there are explicit rules of computation.

Theorem 2 (Pieri’s formula) For any class o and any class oy, with
b integer
o op = Z Oc-
le|=| [+b

Via;<c;<aj—1

Theorem 3 (Giambelli’s formula) For any Schubert class o, holds

Oayq Oaq+1 e Oay+k—1
Oas—1 Oas <o+ Oagt+k—2
O-al,...,ak = .
Oap—k+1 Oay—k+2 e Oay,

There are methods of computation avoiding determinants, hence higher
degree polynomials for big k, n.
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6 Computation of the chord problem

Now, we have all necessary notions in order to compute the chord problem
in G(1,3).
Due to codimension 2 of 5(C) in G(1,3), we have the equation

[¢2(0)] = Qoo + 60'171.

Multiplying the equation by o1 ; and taking degree, we have

8= deg(on,1[62(C)) = #2111 %2(0) = (),

since a generic curve of degree d has intersection with generic plane points
P1,---,Pd, they form 3 chords.
Multiplying the equation by o2 and taking degree, we have

a = deg(o2[t2(C)]) = #{E2 N V2(C)} = (d; 1) 9

since the number of chords through a fixed point to C' can be counted as
the number of nodes of the projection 7: C' — P2(C) through the fixed
point, which is by a well known formula on counting singularities c.

For twisted cubics which have genus 0,

#\Ijg(c) N \IJQ(D) = deg(O—Q + 30’171)2 = 10

7 Future work

We plan to study connection of the Schubert calculus with singular vari-
eties, local multiplicity using Schubert calculus and relate the structures
with the result of Schenzel and Boda on local Bézout theorem.
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1 Introduction

The content of geometry taught at secondary and high schools has undergone
several changes over the last decades, with the result that the elements of the
synthetic geometry of curves have almost disappeared from the curriculum. This
also happened due to the time-consuming point by point construction of the
curves in the pen and paper environment in school praxis. The possibility to use
dynamic geometric programs in lessons can contribute to the return of this nice
and richly motivating chapter to the curriculum. To facilitate this step it might be
a good idea to challenge prospective mathematics teachers to reinvent and/or
develop different types of curves. Using dynamic programs, it is enough to
construct a single point of the curve and select the "trace™ option to plot the points
of the curve. If a curve is defined as a set of points satisfying a given property,
using the "locus" button, GeoGebra easily draws the proper curve. By
continuously changing position of the input data, we can then follow the whole
class of curves, observing their changes due to the mutual positions of defining
entities. This subject offers many opportunities for experimentation,
investigation, inspiration, and motivation.

2 Locus of points

In geometry, a set of all points satisfying one or more specified conditions is
called a locus of points or simply a locus. A locus consists of different positions
of tracing point L satisfying a given property. This property usually is given by
the relationship between moving point M and point L, where M is a point on the
one-dimensional object. While M moves along the one-dimensional object, L
traces the locus. Thus the locus is defined as the image of an object under an
application or transformation: the function that transforms the “mover” into the
“tracer”. The points on the locus depend parametrically on the points of the object
where the “mover” lives [1]. This description also corresponds with how the
dynamic geometric software is able to build the image points, i.e. the locus.
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2.1 Defining properties of loci of points

In school geometry education, the first locus of points is defined according to the
equal distances from one point (a circle), then from two points (perpendicular to
the midpoint) and from two straight lines (bisectors of their angles or a midline
if there are parallel). The set of points in equal distances from one point and one
straight line creates a parabola. An ellipse and a hyperbola are given by constant
sum and constant difference of distances from two points, respectively. We can
create an ellipse and a hyperbola also as a set of all centres of circles that touch
a given circle and pass through a given point. If the given point is inside the given
circle, we get an ellipse, otherwise, we get a hyperbola. The expression “set of
centres of all circles ...” substitutes the expression “locus of points in the same
distance ...”. Continuing in that line of curve definition, we can use various
properties to define a locus of points, as distances from a point, line or curve,
perpendicularity (pedal curves), tangency, or a set of specially defined
intersection points.

3 Groups of curves according to defining properties

3.1 Distance

According to a given distance (alongside the mentioned), there are generated
three types of curves: strophoids, conchoids, and cissoids.

A strophoid (the name is derived from the Greek word for loop) is a curve
generated from given curve c and fixed points F and P (the so-called pole). For
the basic type of strophoid, the so-called right strophoid, the given curve c is
a straight line with pole P on it and FP is perpendicular to c. M is a moving point
onc. Let L; and L, be the two points on FM whose distances from M are the same
as the distance from P to M. The locus of such points L; and L is a right strophoid
(in Fig. 1 the locus of points L1 is red, the locus of points Lz is blue).

Fig. 1: Right strophoid

For a generalised strophoid then M is a moving point on arbitrary curve ¢ and
L; and L, are two points on FM whose distances from M are the same as the
distance from P to M, where P and F are also arbitrary given points.
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The previous construction can be modified by considering a fixed distance d
of points L1 and L, from moving point M instead of the distance from pole P.
This gives us a curve known as a conchoid. The basic type of conchoid, where
curve ¢ is especially a straight line, was invented by the ancient Greek
mathematician Nicomedes, who described it as first and also constructed the
instrument for its construction [2]. In addition to the ruler and compass, it was
the oldest instrument used for geometric constructions. Fig. 2 shows the
strophoid and the conchoid for circle c.

Fig. 2: Generalised strophoid and conchoid for a given circle c.

By a further variation of the preceding construction, we define a cissoid.
Here, the distance d is also variable as in the strophoid construction. Generally,
a cissoid is derived from two curves ci, ¢z and a pole P. The construction is as
follows. Let us give two curves c1 and ¢z and a pole P. Let M1 be a moving point
on c1. Draw a line passing P and My and label the intersection point of this line
with ¢, as M,. Mark a point L on the line so that the distance |PL| = |[M1Mj]. If the
line and ¢, have more than one intersection, then there are additional points (for
all L is valid that |PLj|=|M1Mj|, i =2, 3, ...) and the cissoid may have loops. For
each distance, we get two points symmetric around the pole, so both generate the
same cissoid (see the blue and the red part in Fig. 3).

Fig. 3: Cissoid of two circles

The cissoid of an algebraic curve and a line is also an algebraic curve [3].
There are some interesting special cases. The cissoid of a circle and a line passing
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through the centre S of the circle with the pole P on the circle, so that PS is
perpendicular to the line, is a right strophoid (compare Fig. 1 and Fig. 4).

Fig. 4: Right strophoid constructed as a cissoid

The cissoid of a line and a circle with the pole in the centre of the circle is a
conchoid of Nicomedes, mentioned earlier (in Fig. 5a constructed as a cissoid).
The most famous cissoid is the curve invented by Diocles, cissoid of Diocles.
The name cissoid (ivy-shaped) comes from the shape of the curve (Fig. 5b) which
is a cissoid of a circle and a tangent line at point T of the circle so that the pole is
the opposite point on the circle to T.

Fig. 5a: Conchoid of Nicomedes Fig. 5b: Cissoid of Diocles

3.2 Tangents and perpendiculars

In this group of curves, we come out from a curve and a point. It is formed by
constructing perpendiculars through the given point to all tangent lines to a given
curve. Locus of intersection points of tangents and perpendiculars to them create
a so-called pedal curve. In the simplest case, we have only two points and we
construct perpendiculars through the first point to all lines containing the second
point. The locus of intersection points of perpendiculars is the well-known Thales
circle. The pedal curve of a circle is the limacon of Pascal, the pedal curve of
a hyperbola is a lemniscata (Fig. 6).

Using GeoGebra we can create a pedal curve of various curves (Fig. 7), also
continuously create "a pedal of a pedal of pedal ... and students might be inspired
to make their own experiments" [5].
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Fig. 6: Lemniscata as a pedal curve Fig. 7: Pedal curve of a cosine wave

A construction from Isaac Newton allows us to construct the cissoid of
Diocles also “almost as a pedal curve” — the locus consists of the midpoints of
segments MP, where M is a moving point on the given line and P is the pedal
point (see right angle OPM in Fig. 8) and the length of the segment MP is equal
to the distance from pole O to the given Iine‘.
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Fig. 8: Newton's construction of cissoid of Diocles

3.3 Other defining properties

A very different definition of the cissoid of Diocles from the previous is the
following. Let us construct a circle with a tangent line and a diameter parallel
with the tangent (Fig. 9). Let M is a moving point on the circle and M” its
symmetric point with regard to the given diameter line. Construct a parallel with
the tangent through M. The locus of intersection points L of these parallel lines
and lines F°M’ creates the cissoid of Diocles [6].

Fig. 9: Construction of the cissoids of Diocles using axial symmetry
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Witch of Agnesi is constructed also from a circle and a tangent line at T. Let
TF is a perpendicular diameter of ¢, M is the moving point on ¢ and each secant
FM intersects the tangent through T at G. Let L be the intersection of a line
through M parallel to the tangent and a line through G perpendicular to the
tangent (see Fig. 10). The locus of L, for all such M, is the witch of Agnesi [3].

'/

Fig. 10: Witch of Agneéi

Previous constructions illustrate the variability of possible definitions of
curves given as loci of points. There are several various possibilities for inventing
a new type of curve or new construction for known curves using GeoGebra.

4 Conclusion

In this paper, we have shown the construction of some planar curves based on
their determining properties as loci of points using GeoGebra. We pointed out
various contexts that can be used motivationally in geometry lessons at
secondary schools and in the preparation of mathematics teachers.
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1 Introduction

In recent years, we can see an increased interest in tensegrity structures among architects and
designers. Tensegrity are objects which integrity is ensured exclusively by axially loaded
members that are in stress or in strain. In teaching of future architects, tensegrity objects are
an ideal theme that combines geometry, structural mechanics and architecture. The term
"Tensegrity", created by Richard Buckminster Fuller in the 1960s, is an abbreviation of the
words "tensional integrity".

When looking for a definition of this term, we find anumber of different interpretations;
for teaching, the definition of René Motro, professor at the University of Montpellier,
published in 2004, seems to be the most appropriate: ,,A tensegrity system is a system
in a stable self-equilibrated state comprising a discontinuous set of compressed components
inside a continuum of tensioned components. ““ [1].

2 History

The first structure that can be described as the predecessor of tensegrity objects, was created
in the 1920s by the Latvian avant-garde sculptor Karl loganson. He presented his tensegrity
statue at an exhibition of young artists in Moscow. Its construction consisted of three rods
and seven ropes.

In the 1960s, three names appeared in connection with tensegrity structures: David
Georges Emmerich, Richard Buckminster Fuller and Kenneth Snelson (in alphabetical
order). All three, independently of each other, patented the basic tensegrity structure in the
form of three rods and nine ropes, now known as the simplex structure, in the early 1960s.

Richard Buckminster Fuller, an American architect, mathematician, author of geodesic
domes, named these structures and defined them as “islands of compression within an ocean
of tension”. He devoted the whole his life to tensegrity structures and he held several patents
in this field, as well (star tensegrity, non-symmetrical tensegrity, tensegrity truss).

Kenneth Snelson was an American sculptor who created an incredible statue Needle
Tower, where the elements under pressure don't touch each other and are held in their
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positions just by cables under tension. We can find it in Hirshhorn Museum & Sculpture
Garden, Washington, D.C. or its second version in the Kroller Miiller Museum, Otterlo,
Holland. Snelson defines Tensegrity as a “continuous tension, discontinuous compression
structures”. Snelson and Fuller worked together in the beginning, but then they split up due
to disputes over patent ownership.

At the same time, French scientist David Georges Emmerich dealt with tensegrity
structures; his research seems to be independent to the work of Snelson and Fuller.

In contemporary architecture, we can find various examples of using tensegrity
structures. Professor Mirko Baum, who is the closest to our school, used the tensegrity
principles when designing a bridge in Jaroméf. Abroad, the most famous structure of this
kind is the Kurilpa Bridge in Brisbane, Australia.

The advantage of tensegrity systems is their resistance to external influences
(earthquakes, hurricanes), their easy transport, modular system and the possibility to use
them as temporary structures. The disadvantage is the complex distribution of forces and
a very high risk of disintegration in case of failure of a single element.

Fig. 1: Models made by students FA CTU

3 Tensegrity systems at the Faculty of Architecture, Czech
Technical University in Prague

We included tensegrity systems to the summer semester of the school year 2018/19. At the
beginning of the semester, there was a workshop led by a Czech-German architect Mirko
Baum on the topics “World of Construction / Construction of the World”’; one of the lectures
was devoted just to Tensegrity. Students were acquainted with the definition of tensegrity,
its use in architecture and in detail, with its implementation of the already mentioned bridge
structure in Jaromét. We followed this lecture in descriptive geometry lessons by creating
models of tensegrity structures. The lecture motivated students, and although modeling was
voluntary, there was a great interest in it.

The first models were designed as basic simplex models, i.e. tensegrity structures
consisting of three rods and nine ropes, the basis of which is a regular triangular prism, where
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the solid parts form diagonals of the walls and the remaining edges of the prism are made of
ropes. When creating the model, the prism sheath is first created in the plane and only when
the last rope is fixed, the object is lifted into space. The same principle can be applied to
quadrilateral, pentagonal and other prismas.

Inthe next phase we dealt with tensegrity structures, which geometric basis was formed
by regular or semi-regular polyhedra, the bars are either in positions of the edges of the
polyhedron or they form their body diagonals. In addition to the icosahedron, we also created
a snub dodecahedron.

These models are very demanding and during their construction the whole structure
collapsed many times.

Further, our effort was directed to applications of a modular tensegrity system. The
basic simplex consisting of bamboo sticks and steel wires was multiplied by students who
worked in three-member teams and folded into life-size triangular gates in front of the
school. There are many possibilities for further applications, different possible ways of
connecting modular elements bring many untested variations.

Perhaps the most beautiful model that was created in this project, was the bridge model.
Manufacturing required workshop cutting out of individual parts and their careful cord
connection. The model was placed on a pedestal and illuminated.

All models were exhibited at the Tensegrity models exhibition, which took place at the
school building in June 2019.

After Professor Baum's lectures cycle and lessons in descriptive geometry, the third
educational block deals with the tensegrity structures in the lessons of structural mechanics.
Tensegrity structures are statically multiple indeterminate by their nature. This results in both
structural and computational complications, because these structures can be hardly solved
applying manual calculations. The geometrical bodies solved in the lessons of descriptive
geometry were therefore virtually modeled in structural mechanics programs. In these
programs they are now prepared for the students to simulate behavior of the tensegrity
structures under different loads during the coming semester.

Fig. 2: Models of the bridges
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4 Conclusion

The inclusion of tensegrity models to the lessons of descriptive geometry has
verified a synergic effect of synchronized teaching, in which students are first
motivated by lectures describing real structures, then they are given a theoretical
explanation and at the end of the course they work manually on selected models.
Despite its complexity, this method of teaching has met with a very favorable
response both from teachers and students.
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1 Uvod

Od generatorov, rozkladajucich oblast na elementarne prvky, pozadujeme
spravidla nasledujuce [3].

(a) Splnenie urcitych geometrickych podmienok, ktorym rozkladové elementy
vyhovuju. Pre izotropné prostredie je najvhodnejsim Stvoruholnikom Stvorec,
resp. najvhodnej$im trojuholnikom je rovnostranny trojuholnik. Vzorkovacia
diskretizatna chyba v tomto pripade nepreferuje ziaden smer. V praxi st
popularne Delaunayovské triangulacie, napr. [1], ktoré zo vSetkych triangulacii
nad mnozinou vrcholov P preferuje t, ktord maximalizuje minimalny uhol.
Z hladiska interpolacie hodnét z vrcholov do vnutra trojuholnika je vhodnejsia
stratégia minimalizacie maximalneho uhla [2].

(b) Konformitu, ktora nam dovoluje spojite interpolovat’ hodnoty z uzlov
diskretizacnej siete na celu spojitl oblast’.

(¢) Lokdlne zjemnenie, ktoré dovoluje iteratnym spdsobom zlep§it’ numerické
rieSenie len v podoblasti, kde je kvalita nedostacujuca.

Jednym z pristupov je metdda, zjemnujica zadant siet’ tak, Ze pozadovany
trojuholnik rozdeli delenim najdlhSej strany na polovicu [4] — kap.2. V praxi sa
Casto pouziva variant, ktory vychddza z pravouhlych rovnoramennych
trojuholnikov (Right-Triangulated Irregular Network — RTIN). I my sa sustre-
dime na tento pripad — kap.3. Ukazeme alternativny pristup, zaloZeny na pouziti
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vyvazeného kvadrantového stromu — kap.4. Jeho vyhodou je jednoduchsie
zovseobecnenie do 3D priestoru.

2 Zjemnenie triangulacie najdlhsou stranou trojuholnika

Uvazujme prvotny trojuholnikovy rozklad oblasti
T= (Tl, Tz, T3, ceny Tm)

a usporiadany zoznam trojuholnikov, ktoré¢ chceme zjemnit’,
T4R=(ty, t2, t3, ..., tn) S 7.

1 WHILE (T4R nie je préazdny.)
2 { Vyberme prvy trojuholnik z T4R, t=ABC,
kde a=BC je jeho najdlh8ia strana.

3 IF (a je na hranici oblasti.)
4 { t=ABC rozdelime na tn=ABD a t2=ADC.
5 tin a ti2 nahradia v triangulédcii T trojuholnik t.
6 Odstréanime z T4R prvy trojuholnik, T4R=(tz, 13, ..., tn).
}
7 ELSE
8 { tt=BCD.
9 IF (a je najdlhSou stranou i v tt.)
10 { Dvojicu t,tt rozdelime pomocou stredu E tsecky a
na 3tyri trojuholniky ABE, AEC, DCE, DEB.
11 Tieto Styri trojuholniky nahradia v Tdvojicut,tt.
12 Skratime T4R, T4R=(tz, t3, ..., tn).
13 Odoberieme prvy vyskyt tt z T4R (ak existuje).
}
14 ELSE
15 { T4R=(tt, T4R). }

}

Algoritmus 1

Zjednodusene povedané, ked’ je najdlhSia strana deleného trojuholnika
hrani¢na, delenie na dva trojuholniky je bezproblémové — Algoritmus 1, kroky
3, 4-6. Podobne, ked je vnatorna tisecka najdlhSou stranou oboch prilahlych
trojuholnikov, dvojicu trojuholnikov rozdelime na Styri (kroky 9,10-13).
Konformita rozkladu sa v oboch pripadoch nenarusi.

Nekonformita v procese zjemiiovania vznika, ked’ najdlhsia strana delené¢ho
trojuholnika nie je najdlh$ou stranou prilahlého suseda. RieS§ime to ,,odlozenim*
delenia povodného trojuholnika a analyzou suseda. V Algoritme 1 sa to prejavi
zva¢Sovanim zjemiovaného okolia (kroky 8,9, 14-15), kde zoznam T4R
pouzivame ako zasobnik. Toto zvdéSovanie zasobniku je kone¢né. Vyplyva to
z nasledujuceho: Oznaéme velkostou trojuholnika I(T) dizku jeho najdlhsej
strany,

I(ABC)=max(]AB|, |AC], |BC]),



Dve stratégie pre RTIN siete 91

(d) Je ocividné, Ze postupnost’ vkladanych trojuholnikov do T4R je monotonne
rastica. Vzhl'adom na konecnost’ triangulacie tak do T4R vlozime len kone¢ny

pocet trojuholnikov.
i ii

d P

iii iv

a) b) C)

Obr. 1: Demonstracia algoritmu

Na Obr. 1a) je prvotny rozklad s ozna¢enym trojuholnikom pre zjemnenie.
Postupné vkladanie d’alSich trojuholnikov do T4R (kroky 14-15 algoritmu)
ukazuje Obr. 1b). Vidime, Ze analyzované okolie sa roz$iruje, a vV danom priklade
sa zastavi az na hranici oblasti. Oznaceny trojuholnik 4 je posledny vlozeny
(tj. na zaciatku zasobnika T4R). Jeho zjemnenim (kroky 3-6 algoritmu) mame
stav z Obr. 1c¢)i. Tu redukujeme zasobnik T4R na zaklade krokov 8-13
Algoritmu 1. Svetle Sedou farbou je oznaceny vzdy doplnkovy trojuholnik (so
spolo¢nou najdlhSou hranou). Postupne tak dostdvame rieSenia ii, iii, iv
z Obr. 1c). Uvedeny mechanizmus mozeme sformulovat’ takto:

(e) Za kone¢ny pocet deleni sa fixovana strana stava najdlhSou stranou
prislusného trojuholnika.

Vlastnost’ (¢) demonstruje priklad z Obr. 2. Pre konfiguraciu dvojice troj-
uholnikov ABC,BDC a poziadavke zjemnit’ trojuholnik ABC, delime trojuholnik
BDC, az kym sa strana BC nestane najdlhSou stranou trojuholnika, ktory je s ABC
susedny. V prvom pripade ( Obr. 2a) ) to dosiahneme jednym delenim

BDC = BEC U EDC,
v druhom pripade delime dvakrat:
BDC=BEC U EDC= (BFC U FEC) U EDC.

A C A C

B E D B F E D
a) b)
Obr. 2: Priklad jednokrokového a dvojkrokového delenia trojuholnika BCD

Postup (e) vedie k redukcii zasobnika T4R (kroky 8,9, 10-13) a v kone¢nom
dosledku k jeho vyprazdneniu.
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3 Lokalne zjemnenie nad rovnoramennymi pravouhlymi
trojuholnikmi (RTINp)

V pripade, ked sa obmedzime na pociatoénu triangulaciu pozostavajiucu
z rovnoramennych pravouhlych trojuholnikov (Obr. 1a) ), proces (e) je vzdy
jednokrokovy, ¢o zjednodusuje proces zjemiovania. Naviac sa v tomto pripade
ocividne v kazdom kroku generuju opat’ pravouhlé rovnoramenné trojuholniky.
Udrziava sa tak tvarova optimalnost’ rozkladovych prvkov (a) v celom procese
zjemnovania. Tento pristup sa v literature oznacuje ako RTIN (Right-Triangle
Irregular Network) a ziskal si obl'ubu napr. v kartografickych aplikaciach.
Proces lokalneho zjemnenia demonStrujeme na testovacej geometrii
Stvrtkruh Q vo Stvorci S, S dvojndsobnou plochou, p(S)= 2p(Q)*, Obr. 3.
Lokalne zjemnenie riadime parametrami 0<h;<h,<1 a .
Uvazujme prvotny trojuholnikovy rozklad T = (T, T2, T3, ..., Tm).
Do zéasobnika T4R vlozime tie trojuholniky T € 1, pre ktoré plati:

@ < % < h, a zaroveii I(T)> &.

Automatizovany proces generovania je nasledujuci.
1 Na zéklade kritéria (f) generujeme T4R.
2 WHILE (T4R nie je prézdny.)
3 { Aplikujeme Algoritmus 1.
4 Na zaklade kritéria (f) generujeme T4R.
}
Algoritmus 2

a) b) c)
Obr. 3: Lokalne zjemnenie RTINp na testovacej geometrii

Na Obr. 3a) je testovacia geometria s prvotnou triangulaciou. Obr. 3b)-c)
ukazuju najdenu triangulaciu pre rézne hodnoty & Tmavosedé su tie
trojuholniky, kde nie je splnena druha podmienka (f) (tj. pri zmenseni hodnoty e,
prave tieto trojuholniky tvoria T4R).

Rozsireniu tohto pristupu do trojrozmerného priestoru brani fakt, ze nevieme
najst’ taky Stvorsten, ktory by pokryval cely priestor a zarovei by sme ho vedeli
rozdelit’ na menej ako osem zhodnych kopii, S nim tvarovo totoznych.
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4 Vyvazeny kvadrantovy strom

Kvadrantovym stromom nazyvame 2D rozsirenie rekurzivneho dichotomického
delenia intervalu. Vysledkom je nekonformné delenie pravouhlej oblasti na
pravouholniky. Miera nekonformity # je dana rozdielom stupiiov rekurzivneho
delenia susednych elementov #(E1,Ez) = o(E1)-0(E2). Na Obr. 4a) je priklad

delenia s  =3.
\
i il

2) b) c)
Obr. 4: RTINg na zaklade vyvazeného kvadrantového stromu

Vyvazenym kvadrantovym stromom nazveme také delenie, v kKtorom je miera
nekonformity pre kazda dvojicu elementov | 77 | < 1 — Obr. 4b). Vyvazeny strom
generujeme podobne, ako v Algoritme 1, kde E4R je zoznam elementov, ktoré
chceme zjemnit’.

1 WHILE (E4R nie je prézdny.)
2 { Vyberme prvy element e z E4R.

3 OznacCme S=S1..Sm susedné elementy elementu e.

4 FOR (SieS) {IF (o(e)>a(Si)), {E4R=(Si, Q4R). refin=FALSE.} }
6 IF (refin),

7 { Zjemnime element €.

8 Odstréanime e z E4R.

}
}
Algoritmus 3

Vyvazenost' garantuje Stvrty krok: ked’ okolie pozadovaného elementu ma
mensiu jemnost’ delenia, tak delenie ,,odlozime* a najprv zjemnime toto okolie.

§

a) b) c)

Obr. 5: Lokalne zjemnenie RTINg na testovacej geometrii.
a) vyvazeny kvadrantovy strom, b) vysledna triangulacia RTINg,
c) pre porovnanie RTINp z Obr. 3b).

gl
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Vyvazeny kvadrantovy strom vieme previest na konformnu triangulaciu
RTINg jednoducho — Obr. 4b):
1 IF (Element obsahuje nekonformitu.)
2 { Rozdel element na Styri trojuholniky dvojicou diagonél.
3 Trojuholniky s nekonformitou rozdel na dva.

}
4 ELSE

5 { Rozdel element na dva trojuholniky diagonélou.}

Algoritmus 4

5 Zaver

V prispevku sme ukazali dva spdsoby RTIN triangulacii: zjemiovanim
trojuholnikov podl'a prepony RTINp a zjemniovanim na zédklade vyvazené¢ho
kvadrantového stromu RTINqg. Tabul'ka ukazuje pocet trojuholnikov pre obe
stratégie v zavislosti na zvolenej hodnote €.

e | N(RTINp) | n(RTINg) | no/np
4,5 237 374 1,58
25 572 767 1,34
15 1222 1808 1,48
0,5 5682 9038 1,59

Vidime, ze lokalne zjemnenie zalozené na deleni prepony je uspornejsie.
Z druhej strany, vyvazeny kvadrantovy strom nam poskytuje jednoduchy spdsob,
ako rozsirit metédu do 3D. Toto dava nastroj na efektivne automatické
generovanie siete pre numerické modely, kde geometriu ziskame z CT snimok.
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Abstract. We introduce an algorithm that connects two Bézier patches
indistinguishtably. The algorithm modifies patches to have a common
tangent plane. We use the Chiyokura Kimura method to a tensor product
Bézier surfaces and Bézier triangles. We ensure this type of continuity
for multiple patches by replacing the control points with rational
functions. These are called the Gregory patches. Finally, we present the
results of the algorithm on asymmetric icosahedron and on real geometric
objects such as Standford Bunny.

Keywords: Bézier triangle, G* continuity, Chiyokura Kimura method.

1 Introduction

Constructions of G continuous surfaces is known problem in geomet-
ric modelling. Many algorithms were developed. One of them is called
Chiyokura Kimura method presented in [2]. We combine this idea with
Gregory patches based on [3].

We present this method as the algorithm and we state one of theorems
proved in bachelor thesis [4].

Finally, we present results of our implementation. We use mainly
Bézier triangles for multiple patches.

2 Notions of geometric modelling

We introduce basic notions of geometric modelling based on [1] and we
define G continuity formally.

2.1 Bézier patches

We use two types of Bézier patches: tensor product Bézier patches and
Bézier triangles.

Definition 1 (Tensor product Bézier patch). Let m,n € Ny and let P; ; €
R3 for i € {0,1,...,m}; j € {0,1,...,n} be called control points. We
define tensor product Bézier patch by p(u,v) = Y . P;BMt)B", t €
[0,1] where Bl and B" are Bernstein polynomials of degrees n and m.
The ordered pair (m,n) is called degree of tensor product Bézier patch.

Definition 2 (Bernstein polynomial for triangles). Letn € Ny. We define
Bernstein polynomial for triangles by

i151k!
where i +j+k=mn;i,5,k>0andu+v+w=1.

uolw”,

sz7k(u,v,w) =
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Definition 3 (Bézier triangle). Letn € Ny alet P, j, € R®, i+j+k=n
be control points. Let B;fj’k be Bernstein polynomial for triangles. We
define Bézier triangle by

plu,v,w) = Z P, j 1B i (u,v,w),
i+j+k=n
i,5,k>0

where u +v+w =1; u,v,w > 0. We call the number n its degree.

2.2 G! continuity
We denote T,.p a tangent space of Bézier patch p in point . We use T for

a Bézier curve which is a common boundary between two Bézier patches.
Bézier patches are C°° (smooth), therefore C! as well.

Definition 4 (G° continuity). Let p, ¢ be Bézier patches. We say that the
patches p, q are GO continuously connected if there exists a difeomorphism
¢ :[0,1] = [0,1] such that T'p(v) =T 4(p(v)).

Definition 5 (G continuity). Let p, ¢ be Bézier patches that are G° con-
tinuously connected along T'. We say that patches p, ¢ are G' continuously
connected along I if Ve € T : T,p = T,q.

Our aim is to connect Bézier patches G! continuously. At first, we
require G' continuity along the common boundary of two patches and
then we connect G continuously multiple patches.

3 Algorithm

In this section we deal with tensor product Bézier patches of degree (3, 3)
and Bézier triangles of degree 3.

3.1 Method Chiyokura Kimura

Fig. 1: Input and output of Chiyokura Kimura method

We use a notation as on figure 1. We assume that:
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e Vectors ag, by, ¢y are linearly dependent.

e Vectors ag, bs, co are linearly dependent.

Red points denote control points of the common boundary of two patches.
Green points are the output of the algorithm. How to compute these green
points is described in [4] and there is proved that it ensures G continuity
along the common boundary.

Geometrically we define a tangent plane in every point of a common
boundary which is a linear transition between tangent planes in corner
points of the common boundary. There is an example of this method on
figure 2.

Fig. 2: Result of our implementation

Using Bézier triangle of degree 3 there is only one inner control point.
So we use degree elevation for this patch (a common method described in
[1]). We get the patch of degree 4 and then we use the previous method
in similar way. Input is the same as previously. Black points are control
points after applying degree elevation. Yellow points are the output of
an algorithm for Bézier triangles. There is an example of this method on
figure 4.

W, Wi A W,
o 9 .o

|
-
v obo" oy,

2 14 fl

Fig. 3: Input and output of the algorithm for Bézier triangles
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Fig. 4: Result of our implementation

3.2 Gregory patches

Gregory patches are a generalisation of Bézier patches. Instead of inner
control points there are blending functions. That allows us to connect G*
continuously multiple patches. We call this approach Gregory method.

Remark 1 (Vertex inconsistency problem). Two Bézier patches becorne
G' continuously connected along a common boundary by using Chiyokura
Kimura method. ) )

But at a point where more than two patches meet there % # 88v§’u
in general case. It’s because they are build from different constructions.

This is called vertex inconsistency problem that can be solved by us-
ing rational blending functions. These functions ensure that the second
partial derivatives don’t exist in control points that belong to at least two
boundaries.
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Fig. 5: Gregory triangle

Definition 6 (Gregory triangle). Let B}, . to be Bernstein polynomial
for triangles. Let 18 points be given and denoted as on figure 5. We define
blending functions by relationships
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1-v)wPy110+v(l—w)Po11w
(1 =-v)w+v(l—w)

(1 — u)wpl,Q,l,u + u(l —
(1I-ww+u(l—w

(1 — U)UP1,1,2,u + u(l — U)PLLQJJ
(1—u)v+u(l—o) '

Py11(u,v,w) =

)

w P1,2,1,w

)
) :

Py oq(u,v,w) =

P1,1,2(U, v, w) =

We define Gregory triangle by

p(u,v,w) = Z Pi,j,k(u7v7w)BZj,k(uaan)7
i+jt+k=4,
i,5,k>0
where u + v +w = 1; u,v,w > 0. These 18 points are control points of
Gregory triangle.

Lemma 1 (Blending lemma). Let p to be a Bézier patch of a degree 4 and
let denote its control points as on a picture 5. Let py be a Gregory patch
constructed from Bézier triangle p such that outer control points of p,
are equal to outer control points of p and inner control points of Gregory
patch define as: P12, P21, are chosen arbitrarily and in addition
Piiow=Pii2 Pioiuw=Pi21 and Poyio=Po11,w="Po11-

Then Typ = Typy YV € T'(v) whereT'(v) = p(0,v,1—v) = py(0,v,1—v),
v € [0,1].

The corollary of blending lemma is that this method can be used for
G continuous constructions of more complicated objects. There also exist
Gregory patches for tensor product Bézier patches.

4 Examples

We show several examples of the algorithm. Algorithm was implemented
in Wolfram Mathematica [5)].

Fig. 6: Asymmetric icosahedron
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For a given triangular mesh we compute every control point along
a boundary by appropriately chosen intersection of three planes. After
getting these points we can follow the algorithm for Gregory patches.

We applied the Gregory method for asymmetric icosahedron and geo-
metric models as Stanford bunny and elephant.

) L {://r/g,
b
r

{

Fig. 7: Stanford bunny

5 O

Fig. 8: Elephant

5 Conclusion

We presented theoretic base of the method Chiyokura and Kimura and
we showed various examples of G continuous surfaces. It would be inter-
esting to compare efectiveness of other constructions and to study how to
ensure G continuity for multiside objects.
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Abstract. In the Gothic era, architectural works were designed by using
geometrical frameworks based on in praxis verified measurements of a structure.
The proportions of constructions, which had proved to be static and aesthetic
on the implemented designs, were also applied to later designs, thus defining
the actively used composition formulation. During geometric analysis, we
encounter repeating rules resulting from the principle of square (“ad quadratum”),
equilateral triangle (“ad triangulum”) or exceptionally circle (‘“ad circulum”).
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1 Graphical basis

The Gothic windows form a very interesting and shaped chapter
of compositional geometry. Traceries, a rigid structure of stained glass fittings,
are subject to a complex composition of interminable curves and bear
a particularly well legible geometry.

Only a small fraction of the original Gothic structure drawings has been
preserved to now. Although drawings from the reconstruction period (mainly
the second half of the 19" century) appear to be a more accessible graphical
basis, the question remains to what extent modern drawings rely on the original
medieval building experience. However, the architects of this period
approached the works with respect and intent to preserve or to highlight
the architectural value of the building, only a few of them actually relied
on scientifically documented historical facts about the medieval architectural
composition.

Kamil Hilbert (1869-1933), one of the architects with a significant
scientific overlap in history of architecture, took a substantial part
in the completion of the Cathedral of St. Vitus, St. Wenceslas and St. Adalbert
in Prague and one of his works, an orthogonal drawing of the great window of
the Prague Cathedral’s northern transept, is used as a graphical basis
for this geometric analysis.

According to the number of minor inaccuracies in the basic drawing, it can
be assumed that the tracery patterns were not composed through synthetic
geometry procedures. However, some compositional rules may be derived
from its application.
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2 Procedure

The Gothic tracery is characterized by its dynamically recurring details
and seemingly unfinished, harmonic curves, which fill the inside of a window
opening. In order to ensure a smooth transition between the circular arches,
the axes of each circling element must meet at a common point on a common
tangent. Then, one of the most suitable tools for solving the composition
of tangent circles is the solution of the Problem of Apollonius (Apollonius
of Perga, 262 BC — 190 BC).

Since the circles consisted of many curved parts as a kit, it can be assumed
that the curvature of individual arches deliberately coincided as much
as possible, due to the lower cost of stonework. Rotation and translation will
thus find a place in the composition design.

In the following sections, the most appropriate methods of geometrical
reconstruction of a Gothic tracery will be presented.

2.1 Rotation

In order to obtain the most accurate geometrical reconstruction of the whole,
it is necessary to begin the analysis from a clearly defined detail, not from
the shape envelope. In the case of the discussed window tracery, it is
an arrangement of six tangent circles.

Fig. 1: Rotation of the base circle
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2.2 Problem of Apollonius: the case ‘LCC’

The position of the ‘newly added’ objects will be derived from the arrangement
of the base circles. Two smaller circles of identical radius should be inscribed
into the gap between the three circles forming the top of the base tracery.
The contact between the two inscribed circles is defined by their common
vertical tangent. The other defining objects are the two adjacent base circles.
Thus a ‘LCC’ Problem of Apollonius (line, circle, circle) has been defined
and subsequently transferred to a ‘PLC’ Problem of Apollonius (point, line,
circle) through the application of dilatation.

T ==
PN

Fig. 2: Problem of Apollonius: solution of the case ‘CCC’

2.3 Application of an equilateral triangle

The importance of using an equilateral triangle is closely related to the rotation
tool. Through its application, not only the centre of a circle around which
the other objects rotate can be found, but also a circle which creates the tracery
itself can be defined.

As shown in section 2.1, the basic defining object of the central tracery is
a regular hexagon. It is obvious that such a hexagon consists of just six
equilateral triangles.
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Fig. 3: Application of an equilateral triangle

2.4 Problem of Apollonius: the case ‘CCC’

According to the discussed geometry, an entirely typical situation occurs when
the position of the sought circle depends on the position of three already
existing circles. Therefore, a ‘CCC’ Problem of Apollonius (circle, circle,
circle) has been defined and subsequently transferred to a ‘PPC’ Problem
of Apollonius (point, point, circle) through the application of dilatation.
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Fig. 4: Problem of Apollonius: solution of the case ‘CCC’
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2.5 Translation

In the context of the mention of attempts to repeat the curvature of arches
with an intent on reducing the cost of stonework, the compositional method
of translating (shifting and repeating) the circled elements finds a place
in the geometrical analysis.

Fig. 5: Translation

3 Conclusion

The analysis of the geometry of a Gothic tracery shows that the composition
of its inner elements may be governed by strict and repeating rules.
In an ascending way, from a clearly shaped detail to a less legible whole, it is
possible to derive the shape of individual structures.

However, it still remains a question to what extent the synthetic geometry
served as a tool for a medieval design and to what extent the design was based
on the previous construction experience of craftsmen and on the intuition
of an architect.
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Abstract. V prispevku sa sistredime na lohu logiky vo vyucbe deskrip-
tivnej geometrie a na techniky dokazovania tvrdeni. Stru¢ne uvadzame
zékladné typy dokazov s ukazkami v planimetrii a stereometrii. Upo-
zornujeme na metodické a technické tskalia induktivnych a deduktivnych
metod dokazov, ponikame niekol'ko nahl'adov do pojmotvorného procesu
v deskriptivnej geometrii a prezentujeme viacero ilustra¢nych prikladov
vhodnych na priame zaradenie do vyucovacieho procesu.

Keywords: logical thinking, conceptual learning, proof techniques
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1 Uvod

Logika plni v didaktike uilohu pomocnej vedeckej discipliny. Pomocou lo-
giky mozno identifikovat’ vo vyucovacom procese analyticko-syntetick,
induktivnu, deduktivnu a porovnavaciu metédu. 7 didaktického hl'adiska
je uvedené rozdelenie metéd len pomocné, pretoze logické metddy neberu
do tivahy vzajomnt sicinnost’ pedagdga a Studenta, co je zdkladnym zna-
kom a predpokladom metdéd vyucovacieho procesu. Logika vsak zasahuje
do vystavby vyucovacich predmetov, rozvijania logického myslenia, vy-
tvarania pojmotvorného procesu a najmé do techniky dokazov.

V naSom prispevku sa stustredime na tie poznatky z logiky, ktoré peda-
gbg vyuziva pri priprave vyucby tych vyuc¢ovacich predmetov, pri ktorych
je potrebné logické myslenie. Takymi vyuCovacimi predmetmi st mate-
matika, geometria a v neposlednom rade aj deskriptivna geometria (DG),
z ktorej vyberdme jednotlivé prezentované ukazky a ilustracie.

2 Rozvijanie logického myslenia

Poznatky z matematiky a DG si Studenti najefektivnejSie osvojujui, ak
u nich dominuje logicko-matematicky alebo priestorovy (vizudlny) uc¢ebny
styl [5]. Studenta s logicko-matematickym ucebnym stylom zaujima ako
veci fungujui, hl'adé raciondlne vysvetlenie, logiku veci a vzt'ahov. U $tu-
denta s priestorovym uc¢ebnym stylom prevlada schopnost’ mentdlne ma-
nipulovat’ s objektom, ma vyvinutd priestorovi predstavivost’, orientaciu
v priestore, zmysel pre farby, tvary a proporcie v grafickej prezentécii
myslienok.
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Ciel'avedomé rozvijanie logického myslenia spolu s rozvijanim pries-
torovej predstavivosti je jednou z hlavnych dloh vyucby DG. V tomto
predmete pracujeme s pojmami, ktoré sa opieraji o predstavy, pricom
niektoré pojmy a zakonitosti si osvojujeme abstrakciou prvkov realneho
sveta a ostatné pojmy a zakonitosti berieme ako logicky nevyhnutny do-
sledok uz zndmych pojmov, vzt’ahov a tvrdeni.

Zameriame sa geometrické pojmy, ktoré vznikli abstrakciou redlneho
sveta. Su to vo vécSine pripadov pojmy myslené, t. j. hmotne neexis-
tuju, existuju vsak ich fyzikdlne modely. Prave na fyzikdlnych modeloch
Studenti zist'uji ich spolocné vlastnosti a abstrahuju od vsetkych inych
vlastnosti. Pojmy ziskané abstrakciou s prvotné pojmy a s urcéené obsa-
hom a rozsahom [2].

Obsah pojmu je sihrn vsetkych tych znakov (vlastnosti, ¢innost{) pri-
slusného pojmu (predmetu, javu, vzt’ahu), ktoré pojmu patria a bez kto-
rych by nebol tym, ¢im ho nazyvame.

Ukazka: Obsahom pojmu hranol je teleso ohrani¢ené hranolovou plo-
chou a dvoma roéznymi rovnobeznymi rovinami, ktoré nie si rovnobezné
s tvoriacimi priamkami hranolovej plochy. Podstavy hranola st zhodné
mnohouholniky, bo¢né steny st rovnobezniky, vSetky bo¢né hrany s zhod-
né usecky, atd’.

Rozsah pojmu je mnozina vSetkych prvkov, ktoré maju vsetky znaky
patriace do obsahu pojmu.

Ukazka: Rozsahom pojmu hranol je mnozina vSetkych hranolov, kto-
rych podstavy si 'ubovolné mnohouholniky, kolmé, sikmé hranoly, hra-
noly zhotovené z rézneho materidlu, ich modely, ale aj myslené hranoly,
atd’.

Znaky, ktoré ma kazdy prvok patriaci do rozsahu pojmu, si jeho pod-
statné znaky.

Ukazka: IThlan tvori jeden m-uholnik a n trojuholnikov, ¢o je jeho
podstatny znak.

Znaky, ktoré nemusi mat’ kazdy prvok z rozsahu pojmu, st vedl’ajsie
znaky prvku.

Ukazka: Thlan ma prave jeden 5-uholnik a pét’ trojuholnikov, alebo
je kolmy ¢i sikmy, to st jeho vedl'ajsie znaky ako ihlana vobec.
Rozsah pojmu mozeme rozdelit’ do tried, takyto proces nazyvame triede-
nie. Spravne triedenie ma nasledujice vlastnosti:

e uplnost’ — triedenie obsahuje vSetky prvky mnoziny a kazdy prvok
je zaradeny do niektorej triedy,

o disjunktnost’ — pri triedeni je kazdy prvok zaradeny prave do jednej
triedy.
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Podkladom triedenia je dichotomické triedenie, pri ktorom triedime podl'a
jedného znaku do dvoch tried. Pri triedeni pouzivame aj trichotomické
triedenie, je to dvakrat aplikované dichotomické triedenie.

Ukazka: Majme dve kladné ¢iselné hodnoty d,r. Za triediaci znak
vezmeme porovnavanie tychto hodnot. Po prvom dichotomickom triedeni
dostaneme: d = r alebo d # r. Vysledok druhého dichotomického triedenia
pre d # r je d > r alebo d < r.

Takéto triedenie v planimetrii aplikujeme pri vzajomnej polohe priamky
a kruznice, kde d oznacuje vzdialenost’ stredu kruznice od priamky a r je
polomer kruznice [3]. Nésledne mézeme situdciu preniest’ do stereometrie
k urcovaniu typu kuzel'osecky pri rovinnom reze rotacného kuzel'a [4].

Ak triedenie Spiﬁa vlastnost’ uplnosti, tak hovorime o klasifikdcii pri-
slusného pojmu.

Ukazka: Klasifikdcia vzajomnej polohy troch navzajom réznych rovin
(Obr. 1).

anNy =9 afny =p
Ny =9 BNy =gq
anNp =9
ap
anNp=m

mCv,aNfNy =m|
mNy=M,anBNy = M|
mNy =@,aNy =p,FNy = g|

Obr. 1: Vzajomné poloha troch rovin.

3 Pojmotvorny proces — axiomy, definicie, vety

Pri budovani matematickych teérii sa vychadza z axiém, definicii a viet.
Axiémy predstavuji zékladné (prvotné) pojmy a vlastnosti budovanej te-
orie. Axiémy sa povazuju za pravdivé a nedokazuju sa. Pozadujeme, aby
ststava axiém bola

e bezospornd — nemozno z nej vyvodit’ vyrok a zaroven jeho negéciu,

e nezdvisld — nemozno vyvodit’ jednu axiému z ostatnych axiom,
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e Uplnd — zo sistavy axiom sa da dokazat’ pravdivost’ alebo neprav-
divost’ matematického vyroku v ramci danej tedrie, ktory nie je axi-
émou.

Zlozitejsie pojmy a postupy sui vymedzené definiciami, ktoré stanovia né-
zov nového pojmu a urécia jeho charakteristické vlastnosti, pricom sa opie-
raji o jednoduchsie, pripadne uz zndme pojmy. Dalsie vlastnosti pojmov,
zvyCajne vo forme matematickej vety, sa logicky odvodzuju zo sustavy
axiém, definicii a uz dokazanych tvrdeni.

3.1 Axiémy v DG

Didaktickd vystavba DG vychddza z Euklidovych Zdkladov (okolo roku
255 pred n. 1), ktoré obsahuji aj 23 definicii zdkladnych geometrickych
pojmov. Euklidov axiomaticky systém pretrval bez zmeny az do vydania
Hilbertovych Zakladov geometrie v roku 1899. Hilbertova kniha je zédklad-
nym kamenom, na ktorom je postavend aj siCasna axiomatickd vystavba
geometrie.

Sustava axiém podl'a Hilberta je rozdelena do piatich skupin: axiomy
incidencie (osem axidém, ktoré opisujui reldciu vzdjomnej polohy bodov,
priamok, roviny); azidmy usporiadania (Styri axiémy vymedzujice relaciu
ylezat’ medzi®); azidmy zhodnosti (Sest’ axiém opisuje zhodnost’ tseciek
a uhlov); azidmy spojitosti (dve axiémy, ktoré zabezpecuji meranie dizok
useciek); azidma rovnobeznosti (jedna axiéma, ktord vymedzuje rovno-
beznost’ priamok v klasickom zmysle).

Suhrn objektov pozostavajici zo vsetkych bodov, priamok, rovin a vy-
menovanych vzt’ahov medzi nimi, ktory vyhovuje vsetkym poziadavkam
Hilbertovych axiém, sa nazyva euklidovskym priestorom. Hovorime, ze
euklidovsky priestor je uplnym systémom zdkladnych geometrickych vzt’a-
hov v rovine i priestore a je pracovnym priestorom aj pri didaktickej vy-
stavbe planimetrie a stereometrie.

3.2 Definicie v DG

Definicia pojmu je predpis, podl'a ktorého mozno o kazdom prvku zistit’,
¢i ho mozno zaradit’ do rozsahu definovaného pojmu alebo nie. Pre DG
su charakteristické definicie, ktoré:

1. vysvetl'uju suhrn charakteristickych znakov definovaného pojmu.
Ukazka: Nech a,b, ¢ su tri nekolinearne polpriamky so spoloé¢nym
zaciatkom O. Zjednotenie danych polpriamok a vnutra vSetkych
troch konvexnych uhlov urcenych dvojicami polpriamok ab, ac, be
sa nazyva trojhran.

2. opisuju konstrukciu, ktorou sa novy pojem zavadza.
Ukéazka: Nech je dana priamka o a body A, A1, neleziace na priamke
o, pricom priamka AA; nie je rovnobeznd s priamkou o. Potom
kazdému bodu X priradime bod X tak, ze
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(a) body leziace na priamke o st samodruzné, t.j. 1 = 1; (obr. 2a).

(b) ak bod X # A, zostrojime bod X, tak, aby priamky X X1 || AA;
a priamky o, AX, A1 X sa pretinali v samodruznom bode 1 = 14
priamky o (obr. 2b),

(c) ak AX]|o, tak aj A1 X1|lo a XX7]|AA; (obr. 2¢).
Hovorime, ze body X, X; si odpovedaji v osovej afinite, ktorej

priamka o je os a body A, A1 si urcéujice body.

A

0
1=1
A
(a) urcenie osovej afinity
A X
0
Al A1 X1

(b) vSeobecnd poloha (c) specidlna poloha

Obr. 2: Osova afinita s osou o a urc¢ujicou dvojicou bodov (A4, Ay).

3. vymenujui vetky prvky, ktoré patria do rozsahu definovaného pojmu.
Ukéazka: Elipsa (kruznica), parabola a hyperbola si requldrne ku-
zel'osecky.

V definicii mé kazdé slovo svoju funkciu a dolezitost’, a preto vynechanie
jedného slova sposobi, ze pod definovany pojem zahrnieme aj iné objekty
alebo naopak, iba podmnozinu tych objektov, ktoré pod tento pojem maju
patrit’. Dolezité je, ze spravna formuldcia definicie vyjadruje nielen nevy-
hnutné, ale aj dostatoéné podmienky [2].

V DG sa moze stat’, ze ten isty pojem definujeme podl'a potreby roz-
nymi sposobmi. Napriklad elipsu mozeme definovat’ pomocou jej ohnisk,
(tzv. ohniskova definicia), alebo ako krivku odpovedajicu kruznici v osovej
afinite, alebo ako rovinny rez na rotacnej kuzel'ovej ploche a. i. Pri vyucbe
nie je vhodné definovat’ ten isty pojem roznymi sposobmi. Zasadou je, ze
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za definiciu pojmu zvolime ti formulaciu, ktora je pre aktualne vysvetl'o-
vanie najvhodnejsia. Ostatné ,.definicie“ sa stanu vetami, ktoré dokazeme
pouzitim zndmych viet a zaradenim zvolenej definicie.

3.3 Vety v DG
Matematickd veta je pravdivy vyrok, ktory sa da logicky odvodit’ zo su-
stavy axiém, definicii a uz dokazanych viet. Pri odvodzovani doésledkov
pouzivame vety, ktoré si vytvorené z dvoch ¢asti: logického podmetu a lo-
gického prisudku.

Logicky podmet vyjadruje, ¢o je alebo ma byt’ splnené, logicky prisudok
vyjadruje, ¢o potom ma byt’ splnené. V matematickej vete vytvara logicky
podmet podmienku P a logicky prisudok, zdver Z.

V matematickych tivahdch si najdolezitejsie vety s dostato¢nou pod-
mienkou. Vetu, z ktorej vychddzame nazveme povodnd veta a celé tvrdenie
zapiseme ako implikaciu P = Z.

Ukazka: Ak majui dve roviny spolo¢ny bod, tak maju spoloént priamku
s tymto bodom incidentnd.

Dolezité su aj vety, ktoré dostaneme z vety s dostatotnou podmienkou
P = Z, ak zamenime podmienku so zdverom. Znamena to, ze z pred-
pokladu povodnej vety urobime zaver a zo zaveru predpoklad. Zostavime
k povodnej vete tzv. obrdteni vetu, ktorti zapisujeme Z = P.

Ukazka: Ak maju dve roviny spolo¢ni priamku, tak maju spolo¢ny
kazdy bod tejto priamky.

Vyznamnu poziciu v matematike k povodnej vete P = Z ma obme-
nend veta. Obmenenu vetu vyslovime, ak v pévodnej vete P = Z nahra-
dime tvrdenie P negéciou tvrdenia Z a tvrdenie Z negéciou tvrdenia P,
t. j. Z' = P’. Obmenend veta ma vzdy rovnakd pravdivostni hodnotu
ako povodna.

Ukazka: Ak dve roviny nemaji spoloéni priamku, tak nemaju spo-
loény ziadny bod.

4 Funkcia a techniky dékazu

Podl'a citatu J. A. Komenského ,Nech sa nicomu nevyucuje cistou auto-
ritou, ale vsetkému dokazom!“ mé byt dokaz dolezitou sicast’ou vyucby
a dokazy je potrebné robit’. Z pohladu logiky pozname induktivny a de-
duktivny typ dokazu [2].

4.1 Induktivny doékaz

Prvé poznatky deti, ako aj I'udstva, sa uskuto¢nuju postupom od jednot-
livych poznatkov k ich zovseobecneniu, t. j. indukciou. Induktivny postup
zarad'ujeme pri vysvetlovani vtedy, ked’ riesime tlohu najskor pre nie-
ktoré Specialne pripady, napriklad vzajomnu polohu priamky a roviny,
a az nasledne riesime 1lohu ich vzdjomnej polohy vo vSeobecnom pripade.
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Od 8peciédlnych pripadov prechddzame k vSeobecnej$im pripadom, napri-
klad pri konstrukcii dIZky usecky v kazdej zobrazovacej metéde. Induk-
tivny postup moze ul’ahcit’ objavenie cesty, ktora vedie k rieseniu daného
problému. Doélezité je pozorovanie, overovanie, ale i pouzivanie analdgie.
Postupne totiz vedu k objaveniu novych viet a vzt’ahov, ktoré najskor
sformujeme do hypotézy, tzv. domnienky, a az po dokaze na zdklade logic-
kého uvazovania oznac¢ime hypotézy ako vety.

V praxi sa stretdvame s iplnou a neuplnou indukciou.

Uplnd indukcia je usudok, ktory sa zaklada na poznani vsetkych moz-
nych pripadov.

Ukazka: Regularna kuzel'osecka mé s priamkou najviac dva spolotné
body. Dokaz vykondme osobitne pre elipsu, parabolu a hyperbolu, a tak
dokézeme jej platnost’ o vSetkych reguldrnych kuzel'oseckach [1], [6].

Netplnou indukciou nazyvame tsudok, ktory sa zakladd na jednom
alebo aj viacerych jednotlivych pripadoch, ale nie nevyhnutne na vset-
kych moznych pripadoch. Ak preskimame niekolko pripadov a vsetky
vyhovuju urcitému tvrdeniu a ziaden z preskimanych pripadov mu ne-
odporuje, prijimame tvrdenie za ,pravdepodobne” spravne. S netplnou
indukciou sa stretdvame v prirodnych vedéach, kde sa prijima ako dokaz
spravnosti. Casto sa prendsa aj do matematiky, kde vsak nemd vahu do-
kazu.

Ukazka: Rovnobeznym priemetom usecky je usecka ,kratsia“ nez isec-
ka premietand. Toto tvrdenie plati v pravouhlom premietani, ale v sikmom
premietani to nie je vzdy pravda.

(jplnd matematickd indukcia je induktivna metéda, v ktorej pomocou
istého axiomatického tvrdenia zovSeobecniujeme platnost’ tvrdeni na vsetky
prvky, ktoré mozno oznacit’ indexmi prirodzenych ¢isel. RieSenie dokazo-
vej ulohy pomocou tplnej matematickej indukcie mé tri kroky:

1. odhad vysledku rieSenia pomocou netplnej indukcie,
2. odhad je spravny pri uréitom krajnom (najnizSom) pripade,

3. dokaz, ze ak je tvrdenie platné pre k-ty prvok, tak je platné aj pre pr-
vok k + 1.

Ak teda dokdzeme, ze nejaké tvrdenie je platné o prvku so zaciatoénym
indexom kg, za predpokladov, ktoré uvedieme, je tvrdenie pravdivé o kaz-
dom d’alsom prvku.

Ukazka: Dokézte, ze n navzajom roznobeznych priamok, z ktorych
ziadne tri neprechadzaji jednym bodom rozdelia rovinu na 1+ %n(n +1)
casti [2].
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4.2 Deduktivny dokaz

Dedukcia je tisudok, ktorym vSeobecnejsie platné tvrdenia o urcitej mno-
zine prvkov prenaSame na jej podmnoziny. Poznatok, ktory ziskame de-
dukciou, je na prvy pohl'ad skromny, ale podmnozina, ktorej znaky ski-
mame, moze byt’ podmnozinou aj inej mnoziny, a teda méze mat’ aj znaky,
ktoré poévodna mnozina nemala. Teda dedukciou ziskavame pojmy bohat-
Sie obsahom.

Pri dedukcii pracujeme s dvomi vetami, ktoré mozeme zapisat’ v tvare
P = M,M = Z. Deduktivne dokazat’ vetu zapisanu v tvare P = Z,
znamend zostavit’ postupnost’ viet s dostatotnymi podmienkami, ktoré
mozno schematicky zapisat’:

P = My,My = My, My = Ms, ..., My = Z, (1)

pricom jednotlivé tvrdenia M7, My, atd’. maju byt’ také, aby vety, ktoré
sme zapisali v schéme (1), boli pravdivé. Schému (1) skrétene vyjadrujeme
v tvare P = Z.

Ukazka: Dokézte, ze ak je rovina a kolma na rovinu S, tak je aj rovina
B kolmé na rovinu « [2]. (Obr. 3)

=

Obr. 3: Rovina a kolm4 na rovinu .

Schéma 1:
e P = Mj: Ak je rovina « kolm4 na rovinu S, tak existuje priamka k
roviny « kolmd na rovinu .

e My = Ms: Ak priamka k roviny « je kolmé na rovinu 3, tak je
priamka k roviny a kolmé na kazdu priamku roviny .

o My = Ms: Ak priamka k roviny « je kolma na kazdd priamku roviny
B, tak priamka k je kolmé na priamku h roviny [, pricom priamka
h je kolmé na priamku r = a N G.
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o M3 = My: Ak priamka k roviny « je kolmd na priamku h roviny £,
pricom priamka h je kolmé na priamku r = aN 3, tak je aj priamka
h roviny S kolma na obe navzajom kolmé priamky k,r roviny «.

o My = M;y: Ak je priamka h roviny S kolmd na navzdjom kolmé
priamky k,r roviny «, tak priamka h roviny [ je kolma na dve
roznobezky k,r roviny a.

e My = Mg: Ak priamka h roviny 8 je kolmé na dve réznobezky k,r
roviny «, tak je priamka h kolma na kazdd priamku roviny a.

o Mg = Mr7: Ak priamka h je kolm& na kazdu priamku roviny «, tak
priamka h je kolmd na rovinu a.

e M; = Z: Ak je priamka h roviny § kolmd na rovinu «, tak je rovina
[ kolméa na rovinu a.

V pripade, ze neopakujeme predpoklady viet a niektoré za sebou na-

sledujtice vety so spoloénym podmetom spojime do jednej zlozenej vety,
tak mozeme pouzit’ zjednodusenu schému dokazu:

P=M=..=M,="Z. (2)

Ukazka: Ak je rovina a kolmd na rovinu S, tak v nej lezi priamka k
kolméa na rovinu . Priamka k je kolmé na priamku h roviny 3, ktora je
kolma na priesecnicu r rovin «, 5. Priamka h je kolméa na obe réznobezky
roviny « a je kolma na rovinu «. Priamka h roviny S je kolmé na rovinu
a, a teda rovina 3 je kolma na rovinu a.

V ucebniciach aj pri vyucbe DG sa pouziva prave zjednodusens forma
dokazu podla schémy (2). Casto sa vsak stava, ze studenti dokazu podl'a
schémy (2) nerozumeju a je potrebné vratit’ sa k jeho tplnej forme podla
schémy (1). Pri¢inou neporozumenia dokazu podla schémy (2) moze byt’,
ze Studentom nie je jasny vzt’ah medzi niektorymi za sebou nasledujicimi
¢lenmi My, Mpi1,i =1,....,k — 1. Najmé zaciatoénikom vac¢sinou nebyva
zrejmd funkcia podmienky P a zaveru Z, pripadne tlohu hra nepochope-
nie, ¢o sa ma dokazovat’ a Co je dané.

5 Dokazové techniky v DG
5.1 Priame dokazy
Priamy dokaz vytvarame z postupnosti pravdivych implikacii: P = M; =
... = My = Z, ¢im dokazujeme pravdivost’ implikdcie P = Z.

Ukazka: Dokézte, ze ak je priamka kolmd na dve réznobezky roviny,
tak je kolmd na kazdi priamku roviny [7].

Priamy dokaz s pouZitim analdgie je metédou dokazu, ktora spociva
v tom, ze vetu najskor dokazeme o nejakom konkrétnom pripade a po-
tom ukazeme analégiu d’alsich pripadov, ¢im rozsirime platnost’ vety aj
na tieto pripady.
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Priamy dokaz na zdklade uplného triedenia je rozSirenim priameho
dokazu o uplné triedenie. Odporuca sa pri dokazoch tych viet, v ktorych
sa robi klasifikdcia a porovnavaju sa ¢iselné hodnoty.

Ukazka: Dokazte, ze priamka moze byt’ nesecnicou, dotyénicou alebo
secnicou kuzel'osecky [1], [6].

5.2 Nepriame dokazy

Nepriamy dokaz tvorime, ak povodnd vetu P = Z dokazujeme tak, ze
priamo dokézeme obmenent vetu Z’ = P’. O nej vieme, ze m4 rovnaku
pravdivostnii hodnotu ako veta poévodna.

Ukazka: Dokazte, ze ak priamka p, ktord je priesecnicou rovin o, T,
je rovnobezna s rovinou p, tak st rovnobezné priamky r, g, ktoré su prie-
seCnicami rovin o, 7 a roviny p.

Obmeny implikécii obohacuju techniky dokazov implikacii. Nepriame
dokazy si vhodné najmé v pripadoch, ked’ si vlastnosti objektov vy-
jadrené negativne, napr. mimobezné priamky su priamky, ktoré nelezia
v jednej rovine. V tychto pripadoch hovorime, ze urobime dokaz sporom.

V pripade dokazu sporom dokazujeme k povodnej vete P = Z jej
negiciu, t.j. P A Z'. Vyuzivame fakt, Ze negdcia vyroku a povodny vyrok
majui opa¢nu pravdivostni hodnotu. V priamom dokaze negécie vyroku
dojdeme k logickému sporu s predpokladom, axiémou, definiciou alebo uz
dokézanou vetou. Takto tvrdenie P A Z’' bude nepravdivé, a preto musi
byt’ pravdivy povodny vyrok.

Ukazka: Povodné tvrdenie je v tvare: Nech dve priamky a,b preti-
naju priamku ¢ pod zhodnymi uhlami, potom sa priamky a, b nepretinaja.
Dokazovat’ budeme negaciu: Nech priamky a, b pretinaji priamku ¢ pod
zhodnymi uhlami a nech majui spolo¢ny bod.

Nepriame dokazy patria medzi dokazy matematickych viet, ktoré sa
dost’ ¢asto pouzivaju v DG, najmé v stereometrii. Vynikaju stru¢nost’ou,
ale vyzaduju pochopenie a preniknutie do jeho logickej struktiury. Nevyho-
dou nepriameho dokazu v DG je nacrt obrazkov, ktory zvycajne kreslime
pre ilustraciu imyselne nespravne.

5.3 Dokazy existencie a jednoznacnosti, konstrukéné dékazy

V DG sa casto stretdvame s vetami, ktoré maju formu ,existuje prave
jedna” alebo ,,mozno zostrojit’ prave jednu”. K dokazu tychto viet nevieme
pouzit’ techniku priameho ani nepriameho doékazu. V tychto vetach je
potrebné dokazat’ existenciu a jednoznacnost’ rieSenia.

Dékaz existencie pouziva konstrukciu vytvorend z postupnosti kro-
kov, pomocou ktorych sa pri pouziti dokazanych viet pozadovany prvok
zostroji. Zostrojeny prvok, napriklad priamka ¢i rovina, je dékazom toho,
ze existuje. T1to techniku dokazu existencie nazyvame konstrukény dokaz.



Logické prvky v didaktickej vystavbe a praxi 117

Ukazka: Dokéazte, ze v bode roviny mozno zostrojit' prave jednu
priamku kolmd na tdto rovinu [7], [2].

V tomto konstrukénom dokaze aplikujeme vetu z planimetrie: Bodom
roviny mozno zostrojit’ prave jednu priamku kolmui na dand priamku [3].

Dékaz jednoznacnosti pouzijeme vtedy, ak vo vete, ktord mame do-
kéazat’, je aj poziadavka jednoznacnosti, ¢ize ak mame vylicit’ existenciu
viacerych roznych rieSeni. Dokaz jednoznacnosti je priamy alebo nepriamy.

Priamy dokaz jednoznacnosti suvisi s krokmi konstrukéného dokazu.
Ak v dokaze aplikujeme viackrat vetu, ktord ma prave jedno riesenie, tak
aj vysledok konstrukéného dokazu ma prave jedno rieSenie.

Nepriamy dokaz jednoznacénosti tiez savisi s konstrukénym dokazom,
ale s tym rozdielom, ze predpokladame existenciu viacerych prvkov s da-
nou vlastnost’ou a ukazeme, ze to vedie k sporu s niektorym predpokla-
dom.

Ukazka: Dokaz jednoznac¢nosti kolmice na rovinu, ak bod P nelezi
vV rovine .

6 Zaver

Uvedeny text predstavuje zostrucnenu kapitolu Poznatky z logiky v di-
daktickej vystavbe pripravovanej vysokoskolskej ucebnice Metodika vjucby
geometrie priestoru. Tato je uréend najméa Studentom ucitel'stva matema-
tiky a deskriptivnej geometrie (predmet Didaktika DG), ale aj inych ap-
robécii s matematikou (predmet Geometria) na Univerzite Komenského.
Ucebnica nepredstavuje nahradu za ucebné texty z DG, ale ststred’uje
sa na teériu vyucovania DG, ktord je doplnend o histériu DG, didaktické
zasady v DG, rozvijanie priestorovej predstavivosti a moderné koncepcie
vyucovacieho procesu.
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Abstract. The construction and properties of Voronoi diagrams in
Fuclidean geometry have been studied and they are known since
P. Dirichlet. In this paper, we discuss the construction and properties of
the Voronoi diagram in hyperbolic geometry which are studied
recently. We work with the Poincaré disk model. We focus on
determining and illustrating the conditions that must be met by a
Voronoi diagram for a given set of points to be non-degenerate, both in
hyperbolic and Euclidean notions.
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1 Introduction

Voronoi diagrams belong to frequently studied objects of computational
geometry with application in many fields of science — astronomy, crystal-
lography, biology, robotics, computer graphics and medical diagnostics.
Voronoi diagram is also a suitable mean for solving problems from several
areas of everyday life. For example, urban planning for the placement of
schools in cities, deployment of emergency medical centers, the problem
of the nearest metro station, post office and hospital or physiological ex-
amination of nutrition of muscle tissue by capillaries. The properties of
Voronoi diagram can be studied in various metric spaces — Euclidean [1],
hyperbolic [4], [2], Manhattan [5] and many results are already known.

We are interested in Voronoi diagram in hyperbolic geometry, which
may be represented in several isometrically equivalent models — the hy-
perboloid model, the hemispherical model, the Poincaré disk model, the
Beltrami-Klein model and the Poincaré half-plane model. There are some
results about Voronoi diagram in Poincaré half-plane model [3] and some
properties and costruction of Voronoi diagram in Poincaré disk model [4]
are already known.

We choose the Poincaré disk model for its geometrically attractive
properties and we are focus on behavior of Voronoi diagram in this model.

2 Euclidean Voronoi diagram

Voronoi diagrams in Euclidean geometry have been already studied in
sufficient width and depth. By [1] if the finite set P = {p1,....,pn} of
distinct points in R? is given, then we call the region

V(pi) ={z € R* ||z — pil| < |l — p;| for i # jii,j € I}
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the Voronoi polygon associated with p; (or the Voronoi polygon of p;),
and the set given by
V={V(p1),..V(pn)}

is called Voronoi diagram generated by P. We call p; of V(p;) the gener-
ator of the ith Voronoi polygon and the set P = {py,...p,} the generator
set of the Voronoi diagram V.

From this definition, we might see that Voronoi polygon for the gener-
ator p; is a set of points that are not farther to the generator p; comparing
to any other generator. If we want to construct such a Voronoi diagram,
we pick one generator and we construct bisector with others generators
from the given set of point (usually not with all of them). Each of bisectors
cut the plane in two half-planes and the intersection of these half-planes
are Voronoi polygons and their union is the Voronoi diagram generated
by the given set of generators.

3 The Poincaré disk model of hyperbolic geometry
The Poincaré disk model is two-dimensional space defined as

D = {(x,y) € R%: 22 +¢* < 1}
with the hyperbolic metric
4(dz? + dy?)
(1—a2—y2)%
The boundary circle St = {(z,y) € R?: 22 + y? = 1} is called the main
circle and it does not belong to the space. The points of the main circle
are called ideal points and they play a similar role as the points at infinity
in extended Euclidean geometry.

Hyperbolic lines, or geodesics, are represented by arcs of circles that are
perpendicular to the main circle. In special case, it is an open line-segment
incident with the center of the disk (diameter of the main circle). For
shortening we replace the adjective hyperbolic with h-.

Two h-lines may be
e intersecting — if the point of intersection is inside D,

ds? =

e parallel — if their common point is on the main circle, it is an ideal
point,
e ultraparallel — if point of intersection is nor inside neither on the
main circle.
Since we know the hyperbolic metric, we can measure the distance of
two points. For the given points z(z1, x2), y(y1, y2) € D, and y* = (y1, —y2),
their distance may be expressed as

d(z,y) = 2arctanh (‘;x__le .
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Then for the given line-segment with the endpoints x(z1, z2), y(y1,¥y2) a
hyperbolic bisector is the set of points z € D for which

d(x,z) = d(y, 2).

It can be shown that hyperbolic bisector is h-line [2].

The last element we need to know is circle and then we are finally
capable to define and construct Voronoi diagram in Poincaré disk model.
If k is a circle in Euclidean geometry, then, if the circle k

e is inside disk D, then it is also a hyperbolic circle but the Euclidean

and hyperbolic centers are different,

e is tangent to the main circle at one ideal point, then it is called
horocycle and the h-center is the ideal point,

e is intersecting the main circle in two distinct points and k is not
perpendicular to the main circle, then it is called hypercycle.

4 Hyperbolic Voronoi diagram
The definition of Voronoi diagram in hyperbolic geometry is analogous
to the definition in Eucliean geometry, but obviously we have to use the
elements and relationship of hyperbolic geometry.

If the finite set P = {p1, ..., p,} € H? of distinct points is given, then
we call the region given by

V(pi) = {z € H*: dlps, ») < d(pj, @), fori# j;i,j € I}
the hyperbolic Voronoi polygon associated with p;, and the set given by

V={V(p1),.,V(pn)}

is the hyperbolic Voronoi diagram generated by P. We call p; of V(p;)
the generator of the i-th hyperbolic Voronoi polygon and the set P is the
generator set of the hyperbolic Voronoi diagram V.

We can see from the previous definition, that Voronoi h-polygon is a
closed set, so it contains also the boundary which can be an h-line, an
h-ray or an h-line-segment. The boundaries are called Voronoi h-edges.
The endpoint of Voronoi h-edge is Voronoi h-vertez and it is mutual point
for three or more Voronoi h-polygons.

It is quite obvious, that if there is a Voronoi h-vertex that is mutual for
three or more Voronoi h-polygons, then the generators of these Voronoi
h-polygons lie on one h-circle. The center of this circle is mutual point for
h-bisectors of h-line-segments given by these generators. But depending
on the type of circle in hyperbolic sense, this Voronoi h-vertex belonging
to these Voronoi h-polygons does not have to exist. It occurs, if the circle
is in hyperbolic sense:
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e h-line, because the h-bisectors are ultraparallel (Fig. 1a),

e horocycle, because the h-center is an ideal point (it does not belong

to the hyperbolic geometry) (Fig. 1b),

e hypercycle, because the center lies outside the disk D (Fig. 1c).

So the only satisfactory situation is, if this circle is in the hyperbolic
sense a h-circle. Furthermore, as in Euclidean geometry, we call the hy-
perbolic Voronoi diagram degenerate if there exist at least one Voronoi
h-vertex at which four or more Voronoi h-edges meet (Fig. 1d). Other-
wise is Voronoi h-diagram non-degenerate.

T

Y
(A2
9

(a) collinear generators (b) generators on horocycle
o
[/ l <

(c) generators on hypercycle (d) degenerate Voronoi h-diagram

</

;:‘.
W
e

Fig. 1: Assumptions for Hyperbolic Voronoi diagram.

In order to avoid a situation when the Voronoi h-diagram is dege-
nerate or the Voronoi h-polygon is unbounded, we assume the following
conditions for the position of the generators.
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Hyperbolic non-collinearity assumption (Fig. 1a)

For a given set of points P = {p1,...,pn} € H?, (3 < n < 00), there is
no h-line m such that the points p;,,...,p;, € P,(k > 3) lie on h-line m
and all other points P\ {p;,,...pi, } are in same half-plane given by h-line
m.

Horocycle assumption (Fig. 1b)

For the given set of points P = {p1,...,pn} € H2, (3 < n < o0),
there is no horocycle g such that the points p;, ,...,p;, € P,(k > 3) lie on
horocycle g and all other points P\ {p;,,...pi, } are external points of the
horocycle g.

Hypercycle assumption (Fig. 1c)

For the given set of points P = {p1,...,pn} € H?, (3 < n < o0), there
is no hypercycle h such that the points p;,,....,p;, € P,(k > 3) lie on
hypercycle h and all other points P \ {pi,,...pi, } are external points of
the hypercycle h.

Hyperbolic circle assumption (Fig. 1d)

For a given set of points P = {p1,...,pn} € H?, (4 < n < 00), there is
no h-circle I such that the points p;,,...,p;, € P,(k > 4) lie on h-circle |
and all other points P\ {p;,,...p;, } are external points of the h-circle I.

5 Conclusion

The main difference between Voronoi diagram in Euclidean and in hy-
perbolic geometry is, that in Euclidean geometry we need only the non-
collinearity and non-circularity assumption. But as we have seen, in hy-
perbolic geometry, there are more cases, when the Voronoi h-polygon is
unbounded.

Now when we know the behavior of Voronoi diagram in hyperbolic ge-
ometry, we would like to dynamic illustrate this situations when some gen-
erator moves along a h-line segment, a h-circle or another simple enough
curve in the Poincaré disk model.

For the future, we would like to provides some statement about hy-
perbolic Voronoi diagrams and build the analogously theory in 3D.
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Abstract. In this paper, we propose a refinement scheme working on sets
consisting of points with corresponding normal vectors. Each point of the
input set and its local neighbourhood is fitted by a quadric surface. Then, a
set of points is selected from the surface and included in the refined set.
Particularly, we focus on the construction of such sets with respect to the
uniformity of the sampling of the refined point set.
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1 Introduction

The problem of refinement is well studied for polygonal meshes [5]. Most
of such schemes rely on the connectivity to compute the vertices of the re-
fined mesh, i.e. the mesh with larger number of vertices and faces. The con-
nectivity is usually provided by the suitable data structure, e.g. half-edge
encoding [6].

However, only few refinement schemes do not require the connectivity
[2, 4]. More precisely, the refinement is performed on an unorganized
point set, i.e. the set of edges and faces is absent. This process is often
referred to as point cloud refinement or meshless subdivision.

In our we work, we propose the refinement scheme with usage of
quadric fitting, which takes the unorganized point set P C V x N C
A3(R) x V3(R) of point-normal pairs as an input. By applying the scheme
we obtain the P’ with more point-normal pairs, which also contains all
elements of the set P. This is done by assigning several new point-normal
pairs for each (P,n) € P.

2 Preprocessing

Before we start introducing new point-normal pairs, we need to assign
three objects for each element of P. Firstly, we determine the neighbour-
hood H C P containing at least 9 elements. Then, we find the quadric
surface @), which is fitted to the neighbourhood H. Finally, we create
the modified set H C H, which is used in the determination of the ele-
ments of the refined set.

In order to process the set P efficiently, we use the octree structure
for encoding.
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.Pj(l+2)

Fig. 1: (a) Points P and Py because they are too distant from P. Also,
one of the points P, and P; needs to be eliminated, since they are too
close to each other. (b) The point P;(; is eliminated, because the angle o
is smaller than the minimal feasible value and its distance from the point
P is larger than in the case of the point Pj(41), which is also incident
with the angle .

2.1 Fitted quadric

Let H = {(Po,ng), ..., (Px,nx)} C P be the neighbourhood assigned to the
pair (P,n) € P. All the elements of H lie within the sphere of the radius
r > 0 such, that |H| > 9, i.e.

|P-P<r, i=0,..k. (1)

Subsequently, we approximate H by a quadric surface, which is given
by Q(x,y, z) = 0 with coefficients A, B, ..., J € R. This is done by finding
the argument of the minimum of the objective function, which is reflecting
the distance of the point from the surface and deviation between the given
normal and the normal of the quadric at the given point. For further
details, see [1].

2.2 Points to be projected

Elements of H are projected onto a quadric surface and included in the re-
fined set. However, we need to filter out those points which are too distant
from P and handle those P;, P; € A(H),i # j, which are too close to each
other, as illustrated in the Fig. 1(a). The filtered set is then denoted by
H.

To eliminate redundant elements of H, we orthogonally project all
the points Py, ..., P, € A(H) onto a plane p given by the normal vector n
and passing through the point P. We denote by Pi- the projected point
of the plane p corresponding to the point P; € A(P) fori =0, ..., k. Then,
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Fig. 2: (a) Projection of the point Pj(l) onto the quadric ij(l).
(b) The point PJ’.(l) is inserted while the point P is processed, but also
when the point P;;) is processed. (c) The two overlapping edges (high-
lighted by thick lines) of two fans (teal and purple) produce two points

(red) that are close to each other, but not identical.

we create a fan around P, i.e. we sort Py, ..., Py with respect to the angle
Pg- PP+, which results in the sequence Pj0yy s Pjry-

Now we start filtering by inserting pairs (Pj(o), 1(0)) -+-» (Pj(k)s j(k))
in the set 7. Then for each | = 0,...,k, we compute the angle oy =
P;yPPj41). Let ¢ € (0,2m) be the minimal feasible value of a; within
the fan. If oy < ¢, we remove:

o the pair (P;q),n;q)), if [|[Pjo) — Pl > [|1Pja41) — P,

e the pair (Pj(41),n;(41)) otherwise.
from the set 7, as can be seen in the Fig. 1(b).

3 Processing

After obtaining the set 7:[, we are allowed to project its elements onto
a quadric surface. Denote by Qp the quadric assigned to the pair (P, n)
and by Qp,,, the quadric assigned to the pair (P, n;u) € 7. Then,
we project the point

. 1 1
Py = 5P+ 5P (2)
onto the quadric
A 1 1
Qpyq) = §QP + §QPJ<U (3)

and obtain the point Pj{(l). The normal n;.(l) is equal to the normal of
ijm at the point P]{(l), see Fig. 2(a).

In certain cases, the point le‘(l) is computed twice, since it is inserted
while processing both elements (P,n) and (P;(y,n;(;) (as can be seen in

Fig. 2(b)). This may be avoided while processing the elements, i.e. while
processing (P, n), insert the pair (PJ’.(Z), n}(1)> into P’ only if
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input literation 2 iterations

45 elements 163 elements 561 elements

Fig. 3: The refinement on a part of a plane. (a) The input set with 45
elements. (b) The refined set after 1 iteration with 153 elements. (c) The
refined set after 2 iterations with 561 elements.

e (P,n) is not contained in the reduced neighbourhood '7':1]-(1) belonging
to the pair (Pji),njq)),

e (P,n) is contained in 7:lj(l), but (P, n;)) was not inserted while
processing the element (P, nj)).

4 Results

The testing was performed on various unorganized sets. These sets were
obtained by sampling of a part of a plane and hyperbolic paraboloid,
a sphere and also Stanford bunny. For each set, we visualize the refined
set after one and two iterations of refinement. We also depict the under-
lying mesh in the visualizations, which was used for sampling of the input
sets. Note, that the information about edges is not used in our proposed
method. When filtering the neighbourhood, the angle ¢ is set manually
to the value ¢ = 27/9 in our experiments to get satisfactory results.

In the case of the regularly sampled plane, we observe, that the refine-
ment using our method resembles the topological step of the Loop scheme
[3] for polygonal meshes applied to the underlying mesh (Fig. 3).

Moreover, we applied our method on the set obtained from the unit
sphere, which is actually created by the vertices and the corresponding
normals of an unit icosahedron. As we see in the Fig. 4, the refinement
respects the uniform sampling of the initial unorganized set with the in-
creasing number of iterations.

The sets obtained from the hyperbolic paraboloid (Fig. 5) and Stanford
bunny (Fig. 6) do not posses regular sampling. The consequence of this
property is the fact, that the areas with dense sampling are also densely
sampled in the refined set. Moreover, the irregular sampling contributes
to locally dense sampling in the refined set in another way. When two fans
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Fig. 4: The refinement on a sphere. (a) The input set with 12 elements.
(b) The refined set after 1 iteration with 42 elements. (c) The refined set
after 2 iterations with 162 elements.

input literation 2iterations

185 elements 686 elements 4354 elements

Fig. 5: The refinement on a hyperbolic paraboloid. (a) The input set with
185 elements. (b) The refined set after 1 iteration with 686 elements. (c)
The refined set after 2 iterations with 4354 elements.

overlap, the two inserted points are too close, but they are not identical,
as depicted in the Fig. 2(c).

5 Conclusion

In our work we presented a refinement method operating on unorganized
point sets, where the elements of the refined set are introduced by using
the quadric fitting to the local neighbourhood. Our aim was to obtain
a refined set which has similar sampling properties as the input set and
as a main inspiration we used the Loop subdivision scheme for polygo-
nal meshes. However, we still need to eliminate situations, which create
the dense sampling artificially (i.e. the areas with the dense sampling in
the refined set were not densely sampled in the input set), as stated above.
Also, our aim is to estimate the minimal feasible value of the angle p and
inspect on the geometric properties of the refined set. These are probably
influenced by the weights for points and normals used in the process of
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input Titeration 2 iterations

453 elements 1996 elements 9207 elements

Fig. 6: The refinement on Stanford bunny. (a) The input set with 453
elements. (b) The refined set after 1 iteration with 1996 elements. (c)
The refined set after 2 iterations with 9207 elements.

searching the fitted quadric and need to be explored thoroughly, since
in our experiments we used constant weights in both cases and this may
results in the noise in the refined set.
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Abstract. This paper contains selected examples of linear discrete systems
with delay and graphical representations of their solutions. A way to clearly
visualise the previously published examples as figures is presented. To
visualise the examples two mathematical programs Maple and GeoGebra are
used.
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1 Uvod

Pri studiu linedrnich diskrétnich soustav se zpozdénim a jejich nasledném
publikovani v ruznych ¢lancich jsme se snazili danou problematiku vzdy
doplnit o piiklady ukazujici pouziti ziskanych poznatki. Tyto piiklady
jsme chtéli dopnit zajimavymi a ndzornymi obrazky. Hlavni naplni tohoto
clanku je nékolik vybranych piikladu spolu s obrazky z naSich jiz pub-
likovanych c¢lanku. Ptiklady jsou dopnény o zdkladni pojmy k pochopeni
dané problematiky. U kazdého obrazku je ddle stru¢né popséno, jakym
zpusobem vznikl, napf. pomocnymi vypocty v programu Maple, zobraze-
nim v programu GeoGebra, poptipadé dalsim upravovanim zdrojovych
dat piimo v LaTeXu.

2 Soustavy linearnich diskrétnich rovnic se zpozdénim
Nejprve zavedeme nésledujici oznaceni Z8 := {r,r+1,..., s} pro véechna
r €Z,s €Z,r < s. Podobné definujeme mnozinu Z°. Déle budeme
pouzivat symbol E pro jednotkovou matici.

V ¢lanku budeme pracovat jen se dvéma nasledujicimu specidlni typy
soustav linearnich diskrétnich rovnic se zpozdénim.

2.1 Slabé zpozdeny systém linearnich diskrétnich rovnic s kon-
stantnimi koeficienty v R?

Uvazujme soustavu

z(k +1) = Az(k) + Bx(k —m), kezy, (1)
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kde m € N je pevné ddno a nazyva se ,zpozdéni“, A = {aij}ij:l a B=
{bij}zz7j:1 jsou konstantni matice typu 2 x 2, det A # 0, B # © (nulové
matice fddu 2), z: 2%, — R2.

Necht je ddna diskrétn{ funkce ¢: Z°,, — R? a necht

I(k) = (p(k)’ ke Z(lm' (2)

Pak funkci z: Z>,, — R? nazveme fesenim pocatecni Cauchyovy tlohy

(1), (2).

V c¢lanku [1] jsme odvodili obecné feseni slabé zpozdéného systému
linedrnich diskrétnich rovnic s konstantnimi koeficienty. Systém se nazyva
slabé zpozdény, jestlize plati det (A+A""B — AE) =det (A — AE),\ €
C\ {0}, tj. charakteristické rovnice systému se zpozdénim a systému bez
zpozdéni maji identické kotfeny. Na zavér zminéného ¢lanku byly vybrany
dva piiklady ilustrujici vysledky prezentované v ¢lanku. Prvni z téchto
piikladu uvadime zde.

Piiklad 1. Necht m = 2 a soustava (1) ma tvar

le(k + 1) = — ml(k) + 1.51‘2(k5> + 21‘1(/4; — 2) — .Z‘Q(k‘ — 2),
xo(k + 1) = =3z (k) + 3.522(k) + 41 (k — 2) — 229(k — 2),

-1 15 2 -1
A= (—3 3.5> » B= <4 —2) ’
Soustavu lze zapsat ve tvaru

xz(k+1) = Az(k) + Bx(k — 2). (3)

Tabulka 1 ukazuje feSeni dané volbou nékolika ruznych pocatecénich
podminek. Pro znézornéni této tlohy jsme zvolili nejprve dvojrozmérny
prostor (Obr.1). Zde je zobrazeno pét vybranych pocatectnich podmi-
nek z(—2),x(—1),2(0) z Tabulky 1, odliSenych ruznymi barvami, a jim
pifslusné spoleéné fesenf x(1),z(2),x(3),... vykreslené modrou barvou.
Kazdy takovy vektor z(k) = (x1(k),z2(k))T je pak v obrézku reprezen-
tovan bodem z(k)=[z1(k), z2(k)]. Poradi téchto bodu odpovidajici poradi
vektoru je ddle naznaceno orientovanymi tdseckami.

Na Obr. 2 jsou znazornény stejné pocateéni podminky a jejich feseni
z Tabulky 1 tentokrat v trojrozmérném prostoru. Zde je kazdy vektor
z(k) = (21(k),22(k))T reprezentovan bodem z(k) = [k,x1(k),z2(k)].
Obr. 1 by tedy vznikl jako bokorys, rovnobéznym promitdnim ve sméru
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z(—2) z(-1) z(0) | z(1),2(2),2(3),z(4),...

(=2,5)" | (4,47 | (6,-1)7

(=2,0)T | (4,3.5)7T | (6,—1)T

(=297 | @3)" | 6.=D" | @.-4T(3,-4)"(5.-2)" (3. -1
(=2,2)7 | (4,2.5)T | (6,-1)T

(-2, )T | 4,27 | (6,-1)T

Tabulka 1: Pocdteéni podminky soustavy (3) a jim odpovidajici feseni

J:Q(k')A

4

Obr. 1: Reprezentace fesen{ soustavy (3) v R?

osy k na rovinu zixs. Pofadi vektoru je opét naznaceno spojenim odpovi-
dajicich bodu. Pro vétsi prehlednost jsme nyni zvolili spojeni pomoci
spline kiivek.

Obr.1 i 2 vznikly pfimou konstrukci v programu GeoGebra a na-
slednym exportem PGF/TikZ kédu pro BTEX. V programu BTEX pak
byly provedeny jiz jen drobné tpravy, jako posunuti nékterych popisku
a podobné.

2.2 Linearni diskrétni soustavy fadu (m + 2)

Uvazujme soustavu
A?2(k) + B*z(k —m) = f(k), keZF, (4)

kde A?z(k) := z(k + 2) — 2x(k + 1) + x(k) je druha diference smérem
dopiedu, B je konstantni regularni matice typunxn, m € Ny, x: 2>, —
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Obr. 2: Reprezentace fesen{ soustavy (3) v R3

R" a f:Z§ — R" je dand funkce.
Dale méjme danu pocatecni podminku

o(k) = p(k), keZl,. (5)
Pak fesenim pocatecni Cauchyovy tlohy (4), (5) nazveme funkei x: Z°,, —

R™.

V clanku [2] jsme se zabyvali vyjddfenim Feseni x(k) tlohy (4), (5) pro
predem stanovené k = k* bez nutnosti vypoctu vSech predchozich hodnot
feseni x(k), tj. pro k € ZS*_l. Pouziti odvozeného vzorce jsme ukézali na
nasledujicim piikladu.

Piiklad 2. Necht n = 2, m = 3, k* = 250. Je ddna soustava
A%z (k) + Ba(k — 3) = f(k), (6)
s poc¢ateéni podminkou

p(=3) = p(=2) = p(=1) = (0) = (0,0)", (1) = (0.001, 0.001>T,( |
7
(0001 —0.001 [ (L,DT pro k=0,
3(0.001 0 ) & f(k){ (0,0)” finak.

Na zgvér pifkladu jsme chtéli ptiblizit chovéni soustavy (6) s danou
pocéteéni podminkou (7) pro prvnich k* + m + 1 hodnot jejiho feSeni.
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Zvolili jsme zndzornéni v trojrozmérném prostoru, kde je opét kazdy vek-
tor x(k) = (x1(k),2(k))T reprezentovan bodem (k) = [k, z1(k), z2(k)]
(Obr. 3). Pro jesté lepsi ndzornost byly do obrdzku pfiddny pudorysy
téchto bodu (vykreslené modrou barvou) a bokorysy (ruzovou barvou).
Pro velké mnozstvi vykreslovanych bodu je v tomto piipadé jiz nelze
konstruovat jednotlivé v programu GeoGebra, jako v Piikladul. Tento
program jsme pouzili pouze k narysovani soufadnicovych os k, x1, =2
spolu s méfitky, a ty poté exportovali do PGF/TikZ kédu. Tim byla
dana axonometrie, v niz jsme chtéli feSeni znazornovat. Pro zvolenou axo-
nometrii jsme si pomoci jednotek na osdch o souradnicich (8) odvodili
transformacni rovnice (9).

X[3.55537, 0.26882], Y[—0.394, 0.418], Z[0, 6.8355] (8)

k 0.0355537 - k — 3.94 - 21 (k)

g 283 - <0.0026882 k+ 4182 (k) + 6.8355-x2(k)) )

Souradnice vsech pozadovanych bodu, odpovidajicich feseni tlohy (6),
(7), i jejich pudorysu a bokorysu jsme spocitali pomoc{ programu Maple.
Poté jsme provedli transformaci g: R? — R? téchto soufadnic a nechali
vypsat vysledné soutadnice jejich obrazu ve tvaru

zacatek (g1 (k), g2(k)), konec,
to je naptiklad
zacatek(—0.1066611, —0.0080646), konec

Retézce ,zacatek® a , ,konec* jsme pak v IXTEX souboru nahradili ¢Asti
piikazu pro vykresleni bodu, naptiklad

\fill,[color=black] (-0.1066611, ,-0.0080646) ++
(-1.5pt,0pt)-—++(1.5pt,1.5pt)-—++(1.5pt,-1.5pt)
-—++(-1.5pt,-1.6pt)-—++(-1.5pt,1.5pt) ;

pro prostfedi tikzpicture.

3 Zaver

V clanku jsme ukédzali nékolik moznosti pro tvorbu obrazku do odbornych
clanku, ale i tfeba pro tvorbu studijnich materidli. Napiiklad pfimou
konstrukei obrazku v programu GeoGebra muzeme ziskat dynamické ap-
plety, statické obrézky v ruznych forméatech nebo zdrojovy kéd pro vlozeni
do KTEX souboru a jeho dal$i moznou tpravu. Program Maple zase
nabizi moznosti vypoctu velkého mnozstvi dat. I kdyz neumoznuje mnoho
grafickych vystupu, lze pouzit ziskana data do zdrojového kédu pro jiné
programy.
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Obr. 3: Reseni Cauchyovy tlohy (6), (7)
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E° — E? animation of regular and other nice
solids with visibility
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Abstract. In previous works (see [3], [4], [5]) the authors extended the
method of central projection to higher dimensions, namely, for E* — E?
projection from a one dimensional centre figure, together with a natural
visibility algorithm. All these are presented in the linear algebraic machinery
of real projective sphere PS* or space 734(V5, V5, R, ~). In this presentation
we further develop this method for E® — E? animation by the exterior
(Grassmann—Clifford type) algebra (with scalar product) and implement on
computer with other effects of illumination, e.g. for (regular and other nice)
polytopes on the base of the homepage http://www.math.bme.hu/~ prok.
The machinery is applicable for any d-dimensional projective space P? and
p-dimensional image.

Keywords: projective spherical space, central projection in higher di-
mensions, visibility algorithm, non-Euclidean geometries by projective
metrics.

1 Introduction

In the Vorau Conference on Geometry, 2007 J. Katona and E. Molnar
presented the problem "Visibility of the higher-dimensional central pro-
jection onto the projective sphere" appeared in Acta Mathematica Hun-
garica [3]. In that paper a general procedure was given — implemented
by the first author to the central projection of the 4-cube directly (with-
out intermediate 3-projection) into the 2-plane of the computers screen —
which projects the edge framework of a d-polytope onto a p-plane from a
complementary s-centre-figure (p+s+1=d,eg. p=2, s=1, d=4).
All those were embedded into the machinery of Grassmann—Clifford type
algebras of d+1-vector- and form- spaces, describing the projective metric
d-spheres, initiated by the second author. Thus, Euclidean and then other
(e.g. hyperbolic, spherical and other projective metric Thurston) geome-
tries can also uniformly be discussed [8], [10] and visualized by J. Szirmai
and his (doctor) students.

In [5] we specified that procedure to the most important orthogonal (or
parallel) projections of the regular 4-polytopes elaborated by I. Prok in his
homepage [11] where 4-polytopes nicely move in the screen. Our initiative
with visibility makes these demonstrations more attractive, and this seems
to be new and timely procedure, not finished yet. Applying d-dimensional
projective spherical geometry PSd(Vd+1,Vd+1, R, ~), represented by the
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x)

Utw)

(u)

E.(e,)

Point at infinity

/ o~
(%) ()'=(u)

Fig. 1: The projective sphere PS?, the double affine plane A% and the
projective plane P2 can also be visualized by vectors of V3 and by forms
of V3.

standard real (d + 1)-vector space and its dual up to positive real factors
as ~ equivalence, the central projection from a (d — 3)-centre to a 2-
screen can be discussed in a straightforward way, but interesting visibility
problems occur, first in the case of d = 4 as a nice attractive application.
So regular 4-solids can be visualized in the Euclidean space E* and non-
Euclidean geometries, e.g. spherical S* and hyperbolic H* geometry. In
[5] the geodesics and geodesic spheres is also illustrated in H? x R and

—_~—

SLsR spaces by projective metric geometry.

In the present paper we extend the above results to the 5-dimensional
space, and illustrate it with some nice pictures [11].
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2 A unified vector calculus

We can describe classical planes uniformly, when we embed these planes
into the projective sphere. This method suits for discussing spherical,
hyperbolic, Euclidean, Minkowskian and Galilean planes. Projective and
affine planes will be special cases, too [8].

Let V3 = V be a vector space over the real numbers R, and V3 =: V.
is its dual space or space of its linear forms. Let a; be a basis in V.
Then b’ is its dual basis in V', iff a;b” = ¢/ (the Kronecker symbol). We
consequently denote by

agp Uo
x=z'a;=("2'2?) [ a | eVandu=blu;=®"b'b°) | uy | €V
ag U2

the corresponding bases and coordinates of vectors and forms, respec-
tively, and apply Einstein-Schouten sum convention for the same upper
and lower indices from 0 to 2.

Form u € V takes the value xu = z'u; € R on x € V. The vector
class x ~ cx = (x) defines a point X = (x) in the projective sphere PS?
with ¢ > 0 and (x) = (—x) in projective plane P? with ¢ € R\ {0}. In dual
terms: u ~ u- 1 = (u) defines a (directed) line u = (u) in PS?iff 10
aline u = (u) = (—u) iff 1 € R\ {0} for P2. The incidence (x) € (u)
means xu = 0. Fig. 1 shows, how an affine plane A% is embedded into
an affine space A3(O;V,V), into the projective plane P? = A% U (3),
furthermore, into the projective sphere PS? that can be considered as a
"double affine plane" extended by a "double ideal line" () at infinity.

Let the main difference to the usual discussion be emphasized: in PS?
an affine line has two ideal points at infinity, one of them is distinguished,
assigned by the viewing direction of the observer. Every point of the affine
line is doubled in order to form a circle (see also Fig. 1). As our Fig. 2
will indicate in 4-space, visualized in the usual 3-space and in the figure
plane. The observer "stands" in the vanishing hyperplane, looking ahead
from Cs(c3) in directions pointing to the positive halfspace where the target
polytope and then behind (say for simplicity) the picture plane are placed.
We can follow these analogies for the d-dimensional space PS? as well.

Relative visibility of X (x) to X'(x’) with (') coordinates can be de-
cided by Figures 3 and by a conventional ordering prescription:
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visible region ‘
(
(v I \
edges of
polytope P
X3 oo [*S) [eS)
(i) o[ (™) = (') = (1)
(P?)
/
"scale line"
Sweeping
hyperplane / /
Fig. 2: Ordering vertices to vanishing hyperplane (v)
2.1 Higher dimensional matrix description
An affin-projective coordinate simplex represents the camera by
+1
Po 1 o Ph Py €9
7 O n Py % o | ..
o :
Cp+1 Cp+1 Chr1 G Cpt1 €1
c° 0 A 4 €d
€0
~: (Cam) ; . Here any point X (x) in the visible region
o0
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(es)

{e)=(c")

(e)=(eP

__e(fx,)

N
Ay R OR R

\'(pxz]
(pj) ‘ \ (PT)

{

) W .
0 e
Fig. 3: Projection of segments to extended local visibility.

can be expressed as

x~ (Lzt, ... 2P, aPtl . xd) €o
e;
N(yO,yl,“"ypvcp+1,“"cd)(cam) €o
, so that
eq
(Lat, ... aP 2Pt 2?)(Cam) ™t ~ (001, . P P et ~
SR ARt
7y07"'7y0’ yO ""7y0'
a) the images (Px) = (y) and (Px') = (y') are different (both are visible);
b) if the images are the same, i.e. y ~y', namely g—; = z;, ey g—z =

’ !
P+l Pt

P
377 then So= > <5—;
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c) if the above equalities hold, then ;—3 < Zﬂi, (the reverse inequality

holds ford=4=4d').
Then X (x) is nearer the centre figure C' than X'(x’). We see here the
critical points of our algorithm:

0, Premliminary triangulation of the polytope which will be projected;

1, Solution of too many linear equation systems (by Gauss-Seidel elim-
ination);

2, Ordering the points to the centre figure C and picture plane II (cam-
era) by coordinates.

3 Coxeter-Schlifli diagram and matrix for 3-cube,
4-cube and regular d-polytopes

4 3 4
o 81 2 B%3
1@ 2 00

_07 _1% —15 _Og = (b)
0 0o -¥ 1

Fig. 4: Cube in E? and symbols for it

We illustrate the 3-cube in Fig. 4 by its characteristic simplex: vertex
Ap, edge centre Ay, face centre As, body centre As, and the 4 side faces,
e.g. b0 = (A;A3A3). That means e.g.

1
cos [ — (b*b?)] = cos [r — g] =—3= p2

in the symmetric matrix (b%) (i,5 =0, 1, 2, 3).

Analogous cases are collected for the 4-cube and the regular d-polytope,
respectively [4], [11].
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4 3 3 4
e o - o " o " o
0 501 1 2 3 /334 4
1 _g 0 0 0
V2
i - 1 -3 0 0
0 0 _% 1 _g
{nol,nm, e, Md—2,d—1; ﬂd—l,d} —
n01 Nio i ma
o o " e - - - _
0 ﬁ01 1 /312 2 d—2 d—l ﬂd_l’d d
1 — cos % 0 0 .
—oos Y 1 —cosp” 0 0
.. 0 — COS ,312 1 0 ’
b = .
0 0 0 1 —cos B 14
0 0 0 .. —cospiThd 1

where 8% = n—’: fori,j=0,1,...,d; i #j, (4,7) # (d—1,d); 1 <n;; €N
natural numbers.

To a regular d-polytope P we introduce a characteristic simplex for P
by the following general

Definition 3.1 We introduce an angle metric for our simplex S just by
the starting bilinear form, considered as scalar product

(b, b7) = b = cos (m — ), i,j=0,1,...,d.

Think of b" as the inward "normal” unit vector to the facet bt (hyperface
ord—1 face) and so b’ to b as well. [J

We have a well known

Theorem 3.1 The scalar product by b above defines a spherical, hyper-
bolic or FEuclidean angle metric of hyperplanes for the projective sphere
PS? by

bl

cosf" = or, in general,
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Fig. 5: a. The 4-cube with Coxeter-Schlifli symbol (4, 3, 3).
b. The 4-Simplex with Coxeter-Schlifli symbol (3, 3, 3).
c. The 120-cell (5,3,3) and its dual : d. The 600-cell (3,3,5).

— (u;v —u;bv;
< ’ > _ J

\/(u,u) (v;v) B \/(uTb”us)(vrbTS’us)

COSw =

for generalized dihedral angle w of hyperplanes (u) and (v); according to
the signature of b :

(+,4,...,+;+) for spherical d-space s,
(4+,4,...,+; =) for hyperbolic d-space He,
(+,4,...,+;0) for Euclidean d-space E®. O

By the inverse matrix of (b¥/ in case S¢ and HY, ie. by (b¥)~! = a;;,
we can define the distance metric of simplex AgA; ... Ag by a coordinate
presentation. E? needs special discussion by the minor subdeterminant
matrix (B;;) of (b"7). For details see [4], [10].
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Fig. 6: a. The 5 cross-polytope with Coxeter-Schléfli symbol (3, 3, 3,4).

b. The 5-cube with Coxeter-Schlifli symbol (4, 3,3,3). They are duals.
c. The 5-simplex (3,3,3,3).

d. The 5-simplex (3,3, 3,3) with covered edges behind, it is self dual.

4 Visualization of regular solids with visibility in 4- and
5-dimensional Euclidean space

By the home page of I. Prok [11] you can wonder the 3 —4 — 5-dimensional
Platonic solids, moving on the computer screen. Imagine light source from
eyes of the observer at the infinity first, then in the centre figure in general
(as our future plan). The surprising scattering effects mean that new-and-
new 2—faces come from behind, first in dark then become brighter. Not
only at the border but also in middle part, since 2—faces of d—1-hyperfaces
also come into the play (if d > 3). For a while convex bodies are easier,
but our algorithm can be applied to non-convex polyhedra as well (see
Fig. 5-6). Our favorite is the 120-cell, where 120 pieces of 3-dimensional
dodecahedra bound the 4-polytope.
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v programu GeoGebra

Practice of Monge Projection in GeoGebra

Petra Pirklova, Daniela Bimova

Dept. of Mathematics and Didactic of Mathematics, Faculty of Science,
Humanities and Education, Technical university of Liberec
Studentska 1402/2, 461 17 Liberec, Czech Republic
petra.pirklova@tul.cz, daniela.bimova@tul.cz

Abstract. Monge projection, part of descriptive geometry, isn’t popular among
students. There are a lot of topics for learning, on the contrary, time for learning is
very short. Students very often complain for low number of exercises for practising
the Monge projection. Above all most of the tasks are without solutions. But solution
without construction is useless and knowledge of the construction of the solution of
a problem is very important. Therefore, we created worksheets of with 133 problems
concerning the Monge projection. The problems start at the basic level and end with
the complex problems. Then gradual construction process (using a slider) and verbal
or symbolic description of the construction were created for each problem in the
dynamic 3D software GeoGebra. GeoGebra book containing solutions for all 133
problems of the worksheets was built.

Keywords: Descriptive geometry, projection, Monge projection, worksheets,
practice, GeoGebra

Klicova slova: Deskriptivni geometrie, promitani, Mongeovo promitani, pracovni
listy, procvicovani, GeoGebra

1 Uvod

Jedna ze zékladnich zobrazovacich metod deskriptivni geometrie - Mongeovo
promitani - je na Technické univerzité v Liberci vyu¢ovana na fakulté strojni,
fakulté architektury a fakulté pfirodovédné-humanitni a pedagogické. Pti studiu
Mongeova promitani je velice dilezité dostate¢né procvicovani jednotlivych
nedostatek tlloh k procvi¢ovani Mongeova promitani. Ulohy, které jiz v u¢ebnich
textech naleznou, jsou vsak Casto bez feSeni, pfipadné pokud feSeni v textu je
znazornéno, pak je pro studujici nepfehledné a $patné se v ném orientuji, protoze
ve vysledném rysu jsou uvedeny viechny konstrukce najednou. Ulohy bez feseni
a piipadné bez prislusného komentafe ¢i popisu feSeni jsou pro mnohé studenty
nepouzitelné.

Proto byly vytvoteny pracovni listy s dostatkem tloh ze vSech oblasti
Mongeova promitani. Od tloh zékladnich az po tGlohy na sestrojovani téles. Aby
vsak pracovni listy byly pro studenty pfinosné, bylo nutné vytvofit také feSeni
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k témto pracovnim listaim. Cilem také bylo, aby feSeni bylo nazorné a podrobné.
K tomuto ucelu byl s vyhodou pouzit geometricky 3D program GeoGebra.

2 Reseni tloh v appletech

Kazda uloha z pracovnich listd byla dle svého zadani v téchto pracovnich listech
vyfesena v programu GeoGebra. Zadani je totozné jako v pracovnich listech,
tedy soufadnice zadanych vstupnich prvka (body, pfimky, roviny, atd.) jsou
stejné jako v pracovnich listech. Také nelze s jednotlivymi urcujicimi prvky
ulohy pohybovat. Tyto prvky jsou v appletu tzv. upevnéné. Pfesné zadani je
samoziejmé dilezité pro vysledek konstrukce, kazdy uzivatel musi mit vysledek
stejny.

Jednotlivé applety feSenych tloh byly vytvafeny tak, aby byly uzivatelsky
ptivétivé, tedy jejich ovladani je pro jednoduchost koncipovano stejné. Applety
jsou rozdéleny na tfi ¢asti. V &asti prvni je umisténo zadani a posuvnik. Pfi
pohybovani posuvniku se postupné zobrazuji jednotlivé kroky konstrukce. U
kazdého kroku se rovnéz objevuje v tomto prvnim okné zapis konstrukce
symbolicky, pfip. slovni. Ve druhé Casti je prumét celé situace v Mongeove
promitani. V ¢asti tieti, ve 3D okné, je zobrazena cela prostorova situace ulohy.
Krokovani konstrukce v Mongeové primétu a ve 3D okné je provazano. Tedy
objevi-li se ¢ast konstrukce ve 2D okné€, pak ta sama cast konstrukce se objevi
také v okné prostorovém.

Pfikiad 28 Lodd
Najoéte stopy roviny o = (a4

Obr. 1: RozvrZeni oken v appletech

Ve 3D okné je také mozné s celou prostorovou situaci otacet tak, aby se
jednotlivé prvky pii pohledu nepiekryvaly a také, aby bylo mozné zhlédnout
objekty z riznych Ghld a uvédomit si jejich vzajemnou polohu.

U uloh zakladnich je popis konstrukce podrobnéjsi a Casto slovni, u tloh

T

e
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Priklad 132:

Piiklad 132
Zobrazte kulovou plochu. jestide
je dana tecna rovina o s bodem
dolyku A abod B

Obr. 2: Applet — sestrojeni télesa

3 GeoGebra kniha

Jednotlivé applety s feSenimi uloh z pracovnich listt byly vlozeny do GeoGebra
knihy ,,Mongeovo promitani* (viz [3]) do ¢asti ,,04 Pracovni listy na strankach
geogebra.org, aby byly kdykoliv dostupné v§em studenttim.

stk MONGEOVO PROMITANI

1. ZAKLADNI ULOMHY

Autor

Téma:
2. POLOHOVE ULOHY

Pokud Ize at 5 nékterymi body Je to napsar adani, Lze phiblizovat, pfi slovat konstrukce pomoci kolecka mysi
3. METRICKE ULOHY biekty ve D okné lze pohybovat podrzenim levého tlacitka my

Obsah

Obr. 3: GeoGebra kniha ,,Mongeovo promitani*

(ast ,,Pracovni listy* byla rozdélena do &tyf &asti - zakladni Glohy, polohové
ulohy, metrické tlohy a télesa - podle typu vloZenych uloh, kvuli snadnéjsi
orientaci Ctenafe mezi tématy. V Gvodu GeoGebra knihy je samoziejmé také
vlozen pdf soubor se zadanim pracovnich listi.

Prace s touto GeoGebra knihou by méla vypadat tak, Ze si ¢tenaf vytiskne
pracovni listy, pokusi se vyfesit danou tlohu a vysledek porovna s pfislusnym
appletem v GeoGebra knize. Posouvanim posuvniku si muze zkontrolovat
postup konstrukce, spravnost vysledku a nastane-li n&jaky problém, muize
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s pomoci uvedeného zapisu a postupu konstrukce nalézt chybu ve svém feseni a
opravit ji.

4 Zavér

Pracovni listy a hlavné jejich dikladné a podrobné feseni byly vytvofeny, aby
pomohly studentim rtiznych oborti prezencniho, ale také kombinovaného studia
pfi studiu Mongeova promitani. S postupné ubyvajicimi hodinami cvic¢eni
vénovanych deskriptivni geometrii musi studenti vice ¢asu travit samostudiem.
Doufame tedy, Ze jim uvedena GeoGebra kniha pomizZe k pochopeni, procviceni

a hlavné porozuméni Mongeova promitani. Prvni ohlasy na pracovni listy jiz
nasveédcuji tomu, ze vytvorené applety sviij ucel plni.

Podékovani
Tento ¢lanek vznikl za podpory Institucionalniho planu TUL pro rok 2019.
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DIAD-tools - development of interactive and
animated drawing teaching tools - the didactic
materials supporting the learning of architectural-
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Abstract. The international project under the Erasmus+ Programme “Development
of Interactive and Animated Drawing Teaching Tools” - DIAD-tools No2017-1-
LT01-KA202-035177 is realized by partners from Estonia, Latvia, Lithuania,
Slovakia and Poland. The project implementation was started on October 1 2017
and will last until March 30, 2020. The main goal of the DIAD-tools project is
to create interactive tools support the learning of technical drawing. After
completing the project tools will be available on the online platform available
for university’s students, college's students, school’s and universities' teachers
from different countries. [3] [4] The project group from Silesian University
of Technology has been elaborated didactic materials in the field of construction
drawing. These materials have been divided in six parts:

1. Architectural-construction drawing - general principles,

2. Graphic designations of the building materials,

3. Dimensioning at architectural-construction drawing,

4. Scales at architectural-construction drawing,

5. Construction elements,

6. Test of architectural-construction drawing.

In the report authors will present problems in realization of the universal didactic
materials in such field as construction drawing.

Key words: architectural-construction drawing

1 Introduction

At present, the Internet is one of the main places where young people, pupils,
and students seek knowledge. Popular online platforms allow you to acquire
knowledge in the field of mathematics, physics, drawing techniques and many
other fields of science. Short instructional videos on, for example, how to use
computer-aided design programs are very popular with students and pupils
and provide extremely valuable scientific assistance to them. Therefore,
in the author's  opinion, the idea of developing didactic materials
for independent study of architectural-construction drawing in the form
of animated didactic tools, contained in the concept of the DIAD-tools project
is extremely valuable and moving with the times. The elaboration of materials
by specialists in the field of architectural-construction drawing based
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on European standards that are common to all countries of the project partners
gives the opportunity to prepare correct teaching aids in the field of presented
information. The didactic experience of authors of materials, employees
of the Faculty of Civil Engineering of the Silesian University of Technology,
academic teachers who have been teaching descriptive geometry and technical
drawing at various faculties of the Silesian University of Technology for many
years is a premise for developing correct materials also in the field of teaching
methodology.

Architectural-construction drawing is a subject taught in vocational schools,
technical secondary schools, and technical universities. It is an important
subject for future engineers and technicians for whom architectural-
construction drawing will be in their professional work the basic language
of communication with other specialists working in the field of civil
engineering and architecture. Beginning in the 1990s, a systematic reduction
in the number of teaching hours devoted to teaching architectural-construction
drawing in study plans and school programs can be observed in all project
partner countries. [1] Therefore, in the process of learning and teaching, there
was a need to place greater emphasis on the independent learning of the pupil
and student.

2 Concept of the construction drawing materials

The main goal of the authors who developed teaching tools in the field
of architectural-construction drawing was to prepare materials useful for both
pupils of technical secondary schools and technical university students.
The concept of developing didactic materials in the form of short animated
instructions presenting the basic issues of individual thematic blocks was
adopted. In three instructional parts, part 1. Architectural-construction drawing
- general principles, part 3. Dimensioning at architectural-construction drawing,
part 5. Construction elements, the same concept of the material layout was
adopted - the axonometric drawing illustrates the spatial problem of the subject
under discussion, and the rectangular projection of the building object serves
to present the method of preparing the architectural drawing. A verbal
commentary in the form of a description of the drawings describes the issue
presented. Parts related to scales used at architectural-construction drawings
and the graphics designation of building materials required the adoption
of a different arrangement of materials because they are a form of an illustrated
dictionary of terms. Also, the part devoted to the test in the field
of architectural-construction drawing was developed in a different graphic
layout because it is a compilation of thematic issues discussed in other parts
of the materials. A musical background has been introduced in all parts
of the teaching materials, which the user of the materials can turn off if
necessary.
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No. 2017-1-LT01-KA202-035177 - Erasmus+
ools

Dimensions should be given in millimetres.
We do not write the abbreviation mm for the dimensional number.

Fig. 1: The graphic layout used in three parts of teaching materials in the field
of architectural-construction drawing - axonometric drawing, orthographic
projection of a building object and verbal commentary discussing the presented

issue.
L2 tools - Erasmus+
1. NATURAL SCALE ] :
. ) ) ) details of very com~ ,
1:1 (1 cm i drawing — 1 ¢m in real)
I or construction elex. !—
2. REDUCING SCALES (unit of qugrlggn f =
1:2
1:?0 working drawings 7 7ih 1=
: | of accuracy (mm, ¢-=-liee o, 1
1:20 ’\'/ ST

1:50 (1 cm in drawing — 50 cm in real)
1:100
1:200

No. 2017-1-LT01-KA202-035177

Fig. 2: The graphic layout used for dictionary parts of teaching materials
in the field of architectural-construction drawing - part 3. Scales at
architectural-construction drawing and part 4. Graphic designation of the
building materials
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2.1 Problems in realization of the universal didactic
materials in such field as construction drawing

As the main substantive basis for the development of materials related
to architectural and construction drawing, binding European standards from this
thematic area were adopted. Adopting such a substantive basis was possible
inthe scope of presenting drawing lines used in architectural drawings,
dimensioning methods, and ways of presenting drawing axes. In materials
related to graphic designations of the building materials and drawing symbols
used in architectural-construction drawings and construction elements
of buildings, it was necessary to adopt as a substantive basis the developed
materials of book publications from the project partner countries. This
assumption resulted from the lack of applicable European standards in certain
thematic areas related to architectural-construction drawing. The lack of open
access to standards was a major problem related to the development of teaching
materials in the field of architectural and construction drawing. In terms
of the choices made in the drawing symbols used in the drawing, the authors
largely had to rely on the literature on the subject - textbooks and materials
available on the Internet. [2]

According to the main assumptions of the DIAD-tools project, the didactic
materials developed should constitute a relatively short animated material,
about 5 minutes. [4] The application of this assumption in practice, when
selecting the issues presented and developing materials, required careful
construction of teaching tools and selection of the issues discussed to be
the most important. It was a big challenge for the authors of the materials,
especially in the scope of limiting the level of detail of discussing the presented
issue.

All didactic materials developed as part of the DIAD-tools project are
prepared in six language versions: English, Estonian, Latvian, Lithuanian,
Polish and Slovak. In the field of materials related to architectural-construction
drawing, this involved the need to analyse professional vocabulary in this field
used in the individual project partners' countries. An expert assessment of the
didactic materials carried out in spring 2019 showed that the materials still
require minor adjustments in this area.

3 Conclusion

Changes in the methods of learning and teaching in all fields of science related
to the dynamic dissemination of Internet access, the constantly decreasing
number of hours allocated for learning architectural-construction drawing
in curricula and study plans make it necessary to develop professional teaching
materials for self-study. Didactic materials in the field of architectural-
construction drawing developed as part of the DIAD-tools project can
constitute such materials.
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Based on the evaluation of the didactic materials in the field of architectural-
construction drawing carried out in spring 2018, it can be concluded that
the materials were developed correctly in terms of methodology and content.

Pupils and students from all countries of the project partners assessed them
directly in the formulated assessments as useful and helpful in the independent
learning of drawing.

Materials were evaluated in a similar way by experts from individual
project partner countries. The expert assessment was carried out in parallel with
the assessment of project participants, which are pupils and students from
Estonia, Latvia, Lithuania, Poland and Slovakia.

Open access to developed didactic materials and their availability in six
language versions suggest that they will constitute a significant supplement
to the existing didactic offer on the Internet. The advantage of the developed
materials may be the fact that they have been prepared by teachers,
practitioners from specific fields.

In the opinion of the author, a good solution related to the further use of
materials by pupils and students would be continuous development and
improvement of the developed materials, also by supplementing certain
thematic areas not included in the materials developed under the project.
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Abstract. Given any regular quadric, there is a three-parameter set of
cutting planes, but the size of an ellipse or hyperbola depends only on
its two semiaxes. This parameter count reveals that on each quadric Q
there exist ellipses or hyperbolas with a one-parameter set of congruent
copies on @, which can even be moved into each other. We present
parametrizations for such movements on ellipsoids and hyperboloids.
There is a close connection between these movements and the theory of
confocal quadrics.

Keywords: confocal quadrics, conics on quadrics

1 Introduction

There are well-known examples of conics which can be moved on quadrics.
Apart from the trivial case of circles on a sphere, paraboloids are surfaces
of translation, even with a continuum of translational nets of parabolas.
On quadrics of revolution, each planar section can be moved.

What’s about general quadrics Q7 There is a three-parameter family
of cutting planes, but the size of an ellipse or hyperbola depends only
on its two semiaxes. The situation for parabolas is similar: Their size
depends on one single length, its parameter, while on hyperboloids and
paraboloids there exists a two-parameter family of planes which intersect
along parabolas.

This parameter count reveals that on each quadric Q there exist conics
with a one-parameter family of congruent copies on Q. Below, we focus
on central quadrics and provide parametrizations for the movement of
appropriate ellipses and hyperbolas Q. It turns out that there is a close
connection with the theory of confocal quadrics.

2 Moving ellipses on an ellipsoid

On any regular quadric Q, the intersections with parallel planes are ho-
mothetic. This means, in the case ellipses or hyperbolas, that they have
parallel axes and the same ratio of semiaxes a. : b.. Moreover, their cen-
ters lie on the same diameter. This is a consequence of the polarity with
respect to (w.r.t., in brief) Q.

In the case of an ellipsoid £, we obtain the biggest ellipse of this
homothetic family in the plane through the center O. On the other hand,
there is a point P € £ with a tangent plane 7p parallel to the cutting
planes, and the axes of the conics are parallel to the principal curvature
directions at P. The conics are even homothetic to the Dupin indicatrix
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at P. This can be confirmed, e.g., by straight forward computation using
the Taylor expansion of the quadratic polynomial at P.

According to the definition of the Dupin indicatrix, the ratio of the
principal curvatures k1, ko at P is reciprocal to the ratio of the squared
semiaxes of the ellipses on £ in planes parallel to 7p, i.e.,

Qe i be = /K1 : VKo, If K1 > ko. (1)

The lines of curvature on quadrics are related to confocal quadrics. There-
fore, we recall the relevant properties of confocal quadrics.

2.1 Confocal central quadrics

Let &€ be a triaxial ellipsoid with semiaxes a, b, and c¢. The one-parameter
family of quadrics being confocal with £ is given as

.I? yQ 22

21k Ptk 21k

=1, where k € R\ {—a?, —b* -}  (2)

serves as parameter. In the case a > b > ¢ > 0 this family includes

—c? <k <oo triaxial ellipsoids,
for —b* <k < —c* one-sheeted hyperboloids, (3)
—a? < k < —b?> two-sheeted hyperboloids.

Confocal quadrics intersect their common planes of symmetry along con-
focal conics. As limits for k — —c? and k — —b? we obtain ‘flat’ quadrics,
i.e., the focal ellipse and the focal hyperbola.

The confocal family sends through each point P = (£, 7, () outside the
coordinate planes exactly one ellipsoid, one one-sheeted hyperboloid and
one two-sheeted hyperboloid. The corresponding parameters k define the
three elliptic coordinates of P. We concentrate on points P of the ellipsoid
& with k = 0, and denote the parameters of the two hyperboloids H; and
‘Ha, respectively, by k; and ky. Hence,

2 2 2
£ 3—2 + Z—Q + 5—2 =1 (4)
and, for i = 1,2 and —a? < ky < —b? <ky < —c? <0

. & n? S
Hl. a2+kl+b2+k1+02+kl_

1. (5)

For given Cartesian coordinates (£,7, () of a point P € &, the param-
eters k1 and ko of the hyperboloids through P are the two roots of the
quadratic equation

K>+ Lk+M=0 (6)
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Fig. 1: Curvature lines (blue), curves of constant ratio of principal
curvatures Ky : kz (red), and direction vectors vi, v» of the principal
curvature tangents at P.

with coefficients

L _ (b2+C2)£2 + (02+a2)n2 + (a2+b2)C2 7
a? b2 c? (7)
2b2 2 1 2 2 2
M = ah—;, where h = OTp andﬁ 22—4 +Z—4 —|—i—4.

If, conversely, the tripel (0, k1, ko) of elliptic coordinates is given, then the
Cartesian coordinates (£,7, () of the corresponding points satisfy

€2 = a’(a®+ k1)(a’+ k2) n? = b (0% + k1) (0% + k2)
(a? =b?)(a? = c?) ’ (02 = e2)(b? —a?) 8)
= (P k1) (P k)
(2 —a?)(c>—b?) ~

There exist 8 such points, symmetric w.r.t. the coordinate planes.
The differences of any two of the equations in (4) and (5) yield
¢ UR ¢? 05—
(2 T k) +b2(b2+ki) +c2(02+ki) =0,t=1,2, and
2 2 2
2 £ 2 + 2 z 2 + 2 C 2
(a® +ki)(a® +k2) (b7 + k1) (0% + k2) (4 k)(c® + k2)

This reveals, that confocal quadrics form a triply orthogonal system of
surfaces. Due to a theorem of Dupin, the surfaces of a triply orthogonal
system intersect each other along lines of curvature. Hence, the lines
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of curvature on ellipsoids and hyperboloids are of degree 4, except the
principal sections in the coordinate planes (see Figure 1).

At each point P of the ellipsoid £ the surface normal np to £ at P
has the direction vector

_(&£ n ¢
ne= (G ) (10)
On the other hand, for point P € £ in general position, the two principal
curvature tangents are the surface normals of the two hyperboloids #1
und Ho through P, therefore in direction of the vectors

vi= ( 3 " ¢ ). (11)

a4k 24k 24k

2.2 Ellipses on ellipsoids
Now, we look for the biggest ellipse on £ among the homothetic family in
parallel planes.

Lemma 1. The semiaxes of the ellipse in the diameter plane parallel
to the tangent plane Tp at the point P € & with the elliptic coordinates

(0, k1, ko) are
ap =/ —]fg, bp =\ —kl. (12)

Proof. The diameter plane is spanned by the direction vectors v and vy
given in (11). We look for A € R with Av; € £, hence

2 2 2
(a2 + k;)%2a?  (0® 4 ki)?0% (4 ki)%c?
This condition does not change if we subtract from the term in square

brackets the left-hand side of the first equation in (9), divided by k;.
Thus, we obtain

)\2 52 _ ‘52 + =1
(a2 + k;)2a2 ki(a2 + k;)a? o ’

and, finally,
A2 €2 772 CQ B 22 .
_k_z |:(a2+k7;)2 + (b2+k‘z)2 + (C2+ki)2 - _k_z ||v7f|| - 17

hence, ap = |A|||va]| = V/—k2 and bp = |A|||v1]] = vV—k1. These equa-
tions can already be found in [1, p. 517]. O

For the movement of a given ellipse e with semiaxes (ae, b.), Lemma 1
implies the necessary condition

ae < ap =+/—ka, where b < \/—ks <a. (13)
Together with (1), we conclude
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Fig. 2: Moving an ellipse on an ellipsoid.

Theorem 1. If an ellipse e with semiazes (ae,be) is moving on a triaxial
ellipsoid £, then the points P € & with tangent planes Tp parallel to
the plane of e moves on a curve with proportional elliptic coordinates
ko i k1 = —ai : —bg. This curve is also the locus of points with constant
ratio of principal curvatures (Figure 1).

All ellipses in planes parallel to 7p have their principal vertices on
an ellipse with the conjugate diameters OP and the major axis of the
diametral section. Let p denote the position vector of P and m = up
with 0 < p = sinx < 1 that of the center M of any ellipse in this family.
Then, its major semiaxis a. equals ap cosz = apy/1 — p?, which results
in

2

pr=1l--g =1--=. (14)
2 t

When, during the movement of the ellipse e, the scalar y vanishes, then
its center M coincides with the center O of £. The corresponding point
P has the elliptic coordinate ko = —az. In order to continue the motion,
point P has to jump to its antipode.

We set

_k)z_ag 2

vi= s = = const., where 1 < v < Z_Q ) (15)

and we use the parameter ¢ = —ko for representing the motion. Then, ¢
is restricted by the interval

max{b?, ve?, a2} <t < min{a?, vb?}, (16)
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and k; = t/v. From (8) follows the parametrization p(t) by replacing
(k1, k2) with (t/v, t). This implies for the trajectory of the center M of e

m(t) = pu(t) p(t) with pu(t) = /1 - % . (17)

Now, we can express the movement of e in matrix form, in terms of posi-
tion vectors x,, w.r.t. the moving space (attached to e) and x w.r.t. the
fixed space (attached to &), as

Vo Vi np

[vall” Ivall” [Inpl]

xy = m(t) + M(t) x,,, where M(t) = { ] . (18)
The square brackets include the column vectors according to (11) and (10)
in the orthogonal matrix M(t).

Note that this parametrization works only for point P in the octant
x,y,z > 0. We get a closed movement after reflections in the planes
of symmetry (see Figure 2). Algebraic properties of this movement are
provided in [2].

3 Moving ellipses on a one-sheeted hyperboloid

Also on hyperboloids and paraboloids, the curves of intersection with
parallel planes are homothetic. However, not in all cases the method, as
used before for ellipsoids, can be applied since a point P either does not
exist or lies at infinity. Moreover, paraboloids have no center O. Below,
we analyse only the movements of ellipses on a one-sheeted hyperboloid
Hi. The case of moving parabolas is presented in [3].

Fig. 3: For ellipses e on a one-sheeted hyperboloid #1, there does not
exist a point P € H; with the tangent plane Tpparallel to the plane of e.

For ellipses e C H1, there is no point P € H; with a tangent plane
7p parallel to e. However, we find an appropriate point P on the ‘conju-
gate’ two-sheeted hyperboloid Hy (Figure 3). The hyperboloid Hs shares
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the asymptotic cone with H;, and, therefore, the axes of the ellipse e
are parallel to the principal curvature directions of Hs at P. The two
hyperboloids satisfy the respective equations

with a > b. The quadrics confocal with Hy are given by

1‘2 y2 22

Y Y

1.

Again, this family sends through each point P outside of the planes of
symmetry three mutually orthogonal quadrics, one of each type. On the
two-sheeted hyperboloid Hy with £ = 0, we use the respective parameters
ko and k1 of the ellipsoid and the one-sheeted hyperboloid as the elliptic
coordinates of P with

ko >a? and a? >k > b2

Then, similar to Lemma 1, the ellipse e € H; in the diameter plane parallel
to 75 has the semiaxes

aﬁ:\/g and bﬁZ\/E.

This is the smallest ellipse on H; in the homothetic family.

Hence, if any given ellipse with semiaxes a. and b, should be moved on
‘H1, the corresponding point Pe ‘Ho has to trace a curve with proportional
elliptic coordinates

k’ozklza%:b%:aizbi
on Ho. Similar to (8), we can parametrize the trajectory p(t) = (£,7,¢)
of P by t := ko > a?, where

2
_ ko _ac

V= — = = const.
k1 b2 ’

hence k; = t/v with b? < k; < a?.

For each 13, the principal vertices of the ellipses in planes parallel to 75
are placed on a hyperbola, for which one principal vertex in the diameter
plane and the point P define conjugate diameters. If a. = ap coshz, then

the position vectors m of the center of the ellipse e and p of the point P
are related by m = sinh z p. Thus, we obtain

2
m=pup with M2=Z—; 1. (19)
B
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This yields, similar to (18), a parametrization for the movement of the
ellipse e on H; (Figure 4). As a consequence of (19), on the trajectory of

P only points with a%2 = ko < a? are admitted. Therefore, the parameter
t = ko runs the interval

max{a?, vb?} <t < min{a?, va?}.

In the case a? < va?, the same phenomenon appears as mentioned above.
When the parameter ¢ reaches a2, then, for continuing the movement of
the ellipse, the point P ecither has to jump to its antipode, or the scalar
w1 in (19) must get a negative sign.

Fig. 4: Movement of an ellipse on a one-sheeted hyperboloid.
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applications such as computer graphics, numerical simulations, production
industries and many more. We present the process of removing duplications
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1 Introduction

The range of algorithms for the construction of a quadrilateral mesh com-
posed of quadrilaterals have been developed in the recent years and are
used in many branches such as computer graphics, [5], computer-aided ar-
chitectural and industrial design, [4], digital surface reconstruction from
point clouds, or production industries, [9]. Although it is evident that the
construction of a quadrilateral mesh is much more complicated problem
then the construction of triangle meshes but in many cases quadrilat-
eral meshes are better suited to various problems of computer graphics
comparing to well-studied triangle meshes.

In our research we concentrate on quadrilateral meshes and meshing
in the plane, i.e. our aim is to construct a mesh for a given planar domain.
Regarding the state of the art, there exist several methods of constructing
quadrilateral meshes for a given n-sided planar region which use different
approaches. We summarized these methods in [10]. Let us briefly mention
the most famous techniques. The paving methods are based on iteratively
paving rows of elements to the interior of a region’s boundary, [1]. There
are also approaches which are using dual graphs of quadrilateral meshes
due to its nice properties, [7]. Because the construction of a triangle mesh
is well-known, some methods starts with the filling of an n-sided region
with a triangle mesh and triangles are merged to quadrilaterals afterwards,
[3]. There exist quadrangulations which work with the prescribed numbers
of edges at the boundary, [13]. The majority of the constructing methods
try to find a topology with the fewest number irregular vertices, [8].

In the present paper we introduce one step in our enumerating algo-
rithms which remove the duplications from the output list of meshes.



166 Surynkova Petra

2 Quadrilateral Meshes of a Certain Class and Enu-
merating Algorithms

We designed and analysed new algorithms for enumeration of all quadri-
lateral meshes of a certain class. The basic idea of enumerating algorithms
is to exploit properties offered by the considering a certain class of quadri-
lateral meshes. To understand the terminology let us briefly summarize
the main terms and define the quadrilateral meshes of a certain class.
Regarding the definition of a quadrilateral mesh we refer [10] again. A
quadrilateral mesh, [2, 6], is a triple (V, E,Q) where V is a set of ver-
tices, E is a set of edges, and @ is a set of quadrilaterals. There exists
an embedding of (V) E, Q) into 2D plane such that each vertex is repre-
sented as a point in the plane and each edge is represented as a curve
in the plane, so that curves connect vertices and each quadrilateral is
depicted in the plane as a quadrilateral. In our study we furthermore
assume only quadrilateral meshes that form a connected, conforming (i.e.
free from T-junctions), orientable 2D manifold with boundary, [2], i.e. we
define quadrilateral meshes for segmentation of simply connected planar
domains.

For our study is also important to distinguish an internal and a bound-
ary edge. An edge of the mesh with two incident quadrilaterals is said to
be internal, while an edge with just one incident quadrilateral is said to be
boundary. A vertex of a boundary edge is said to be boundary, otherwise
it is said to be internal. The valence of a vertex is the number of edges
incident to that vertex.

Without any further restriction the number of quadrilateral meshes
would be too high. Thus we define a restricted class of quadrilateral
meshes, i.e. the quadrilateral meshes satisfy the following properties:

e at least one vertex of each internal edge is internal (the Invariant),

e every vertex has valence < 5, internal vertices have valences 3, 4, or 5,

e quadrangulated planar domain is simply connected.
We assume that the number of internal vertices is given as the input to

our enumerating algorithms. We also distinguish the types of valences of
these internal vertices. The set of defined restricted quadrilateral meshes
with ng internal vertices of valence 3, n4 internal vertices of valence 4,
and njp internal vertices of valence 5 is denoted by Mj(ns,ng, ns).

As we have already pointed out we proposed new algorithms for enu-
meration of all quadrilateral meshes of a restricted class. More details
will be available in [12] in our article which were submitted to CAGD
journal. The algorithms enumerate all possible quadrilateral meshes with
respect to the number of internal vertices with the given valences and the
duplications are filtered out within a post-processing.
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The process of constructing meshes is based on incremental construc-
tion starting from a trivial mesh with one internal vertex. In each step
of construction the number of internal vertices of a quadrilateral mesh M
is increased by one by adding new elements into a quadrilateral mesh or
by additional modifying of a quadrilateral mesh using mesh operations.
A quadrilateral mesh always satisfies the invariant and properties defined
above before and after modification. The mesh operations which are used
during the incremental construction of the mesh are of two types - opera-
tion addition and operation gluing. Operation of adding means to insert
a new quadrilateral or quadrilaterals into the boundary of quadrilateral
mesh M and operation of gluing means to glue two adjacent boundary
edges in quadrilateral mesh M. Mesh operations are prescribed in [11].

3 Filtering Duplications

Our enumerating algorithms computes the list A of quadrilateral meshes
which has to be filtered from the duplications. For removing meshes from
the list A that are equivalent, we go through the list and filter out the
duplications. For checking duplications we use a unique numbering to the
quadrilaterals and boundary edges. The boundary edges are sorted in a
counter-clockwise order starting at an arbitrary edge. Then all quadrilat-
erals of the mesh are sorted as follows. Unnumbered quadrilateral which
is next to the numbered neighbor quadrilateral or has boundary edge
with lowest number gets new number in each step. If more than one
unnumbered quadrilateral are next to numbered quadrilateral ¢ with the
lowest number in some step of a numbering algorithm, these unnumbered
quadrilaterals are sorted in counter-clockwise order starting at unnum-
bered quadrilateral after the lowest twisted numbered neighbor of quadri-
lateral q. Such an ordering is unique for a given quadrilateral mesh. For s
boundary edges of quadrilateral mesh there is s different numberings. For
checking whether two meshes are equivalent we number one mesh with all
its numberings and the second mesh with one arbitrary numbering and
compare all pairs of numberings in the first and the second mesh. This
algorithm detects the topologies that are equivalent.

An example of a unique numbering of a quadrilateral mesh and possible
cases of numberings of quadrilaterals is shown in Figure 1.

If we go through the list A of quadrilateral meshes with duplications,
we retain the first mesh in the list A, as it is the first unique mesh. We
compare the second mesh in the list A with the first unique mesh using
the technique explained above. If they are equivalent, the second mesh is
removed, otherwise it is retained. We continue in the same manner. We
compare the next mesh in the list A with the already retained meshes
one by one until we find an equivalent mesh. If we do, we stop, remove
this mesh and pick up the next mesh in the list. If we look through all
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Fig. 1: Three cases (a, b, and c) of numbering of quadrilaterals in
quadrilateral mesh and an example of a unique numbering of a quadrilat-
eral mesh in three steps.

existing unique meshes without finding an equivalent, we retain this mesh
in the list. After going through the entire list A it consists now of unique
meshes.

4 Conclusion

The article briefly introduced the process of removing the duplications
from the list of quadrilateral meshes of a certain class.

In the future work we would like to extend our enumerating methods
to another types of quadrilateral meshes. We will also focus on the exper-
imental evaluation in selecting the best mesh for a given planar region.
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1 Introduction

This paper is devoted to the construction and analysis of curves of given
direction. This concept is rather trivial if we restrict ourselves to general
smooth curves and use the apparatus of the classical differential geom-
etry [5]. But the situation becomes much more complicated when the
requirement of the rationality of the constructed curves is added [1].

To our knowledge this question was studied only in the special case
of the curves with Pythagorean hodograph, [2, 4]. The general case was
never considered.

The remainder of the paper is organized as follows. We study the
general differential geometry properties of the curves tangent to a given
vector field in Section 2. In Section 3 we give a general solution for the
rational curves and illustrate this problem on two examples. Section 4
is devoted to the properties of polynomial fields and we show certain
simplifications and degree reductions formulas. Eventually we conclude
the paper.

2 Definition and preliminary observations

We will study curves and vector fields in R®. By a vector field we mean one
parameter family of vectors depending in a smooth way on the parameter
t. In order to include also the rational field we allow a zero-measure of
parameter values for which the field is indefinite.

Definition 1 We say, that the curve r(t) is tangent to the field v(t) if
and only if

v(it) xr'(t) =0 (1)
for all t.

It is quite obvious from the definition that there is always at least one
curve tangent to a given field. Indeed we can directly integrate the input
vector field.
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Definition 2 We will call the curver(t) = [ v(t) dt the primitive tangent
curve to the field v(t).

It is also obvious that any other curve tangent to this field can be
obtained in the form ©(t) = [I(¢)v(¢)dt, where I(t) is a smooth real
function.

Proposition 3 For a given field let v(t) = [v(t)dt be its primitive tan-
gent curve and let it has the curvature function k(t) and the torsion func-
tion 7(t). Let T(t) = [I(t)v(t)dt be another curve tangent to the same
field. Then for zts curvature and torsion functions the following identities
hold

R(t) = —= and  T(t) = —+. (2)

r(t) = Ut)r'()
() = V() + 1" (1)
f‘”/(t) — l//( )r'(t) +2l ( ) ( )+l( ) /Il( )

which implies the following identities of the key expressions

Vxi’ = PPr'xr”

det[ / ~// f'”/] — 13 det[r',r”,r’”}.
Consequently we obtain

It/ x| & . det[¥, ¥, "] 7

TR T T xR 1

Q.E.D.
The identities obtained in the the proof provide also an information
about the Frenet frame of the curves tangent to the same vector field.

Corollary 4 All the curves tangent to the same vector field have the same
binormal vector the same ratio of the curvature and torsion functions.
They also have the same tangent and principal normal vectors up to the
change of orientation.

Example 5 The following figure displays two curves which are tangent
to the same vector field (not shown). They have not only the same Frenet
frame but also the same rotation-minimizing frame.
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3 Rational curves
Our goal is to construct rational curves tangent to rational vector fields.
Let us start this section with a simple example.
Example 6 Consider the polynomial vector field
2413 — 12t2 — 12t + 4
v(t)= | 443 — 60t + 24t
12¢2 — 4¢3

Set I(t) = 37 and get #(t) = [I(t)v(t) dt =

% — 8t2 + 361og (2 + 3) — 168t + 168+/3 arctan (%)

_% + 4t% — 12log (t* + 3) + 24t — 24\/3 arctan (ﬁ)

which is of course tangent to the field v(¢).

We see that even from a rational input v(¢) and I(t) we typically ob-
tain a non-rational curve. A different strategy therefore must be used to
construct all the rational tangent curves. The geometrical essence of our
approach is to construct the curve as the edge of regression of an envelope
of (osculating) planes. It can be also expressed purely algebraically as
shows the following proposition proved in [3].

Proposition 7 Given a rational vector field v(t) all the rational tangent
curves r(t) can be expressed in the form

(1) — SO0 X0 0w 0) i) + 70 u(t) x ()
- det[u(t), w(b), w'(1)]

(3)

where u(t) = v(t) x v/(t) and f(t) is any rational function.
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Example 8 Given the field

2413 — 1212 — 12t + 4

v = 4413 — 60t2 4 24t
12t — 443
we compute u =v X v’ and chose [ = é—ﬁ and obtain

} f (u/ « u//) + f (u// x u) + fid (u x u/)
det[u,u’,u”] N

144t7 +732t641251¢°+189t* —1049¢> —51¢2 4213t —22
144(t+3)3(8t3 —3t2—t+1)2
5287 +2380t°4+3324¢° —1188t* —3322¢%+2166t24+153t—153
288(t+3)3(8t3—3t2—t+1)°
481741648 +24t° —720t* —824¢3+180t% +27t—27
288(t+3)3(8t3—3t2—t+1)2

4 Polynomial vector fields

We will focus on the rational and polynomial vector fields. It is obvious
from the definition and equation (1) that a curve is tangent to a vector
field if and only if it is tangent to its arbitrary functional multiple. We
can use this fact to restrict our attention only to polynomial fields.

Lemma 9 If a curve r(t) is tangent to a rational field v(t) then there is
up to a constant multiple a unique vector field v(t) with relatively prime
components to which the curve is tangent as well.

Proof: Let k(t) be any rational nontrivial function and define v(t) =
k(t)v(t). Then any curve is tangent to v(¢) if and only if it is tangent to
v(t) because

v(t) x '(t) = k(t)v(t) x £'(t).

Now there is up to a scalar multiple precisely one rational function k(t)
so that v(t) = k(t)v(t) is polynomial with relatively prime components.
Indeed, if k;(t) denotes the polynomial least common multiple of the de-
nominators of the components of v(t) then ki (t)v(t) is a polynomial field.
Let ko(t) be a polynomial greatest common divisor of its components.
Eventually set k(t) = ki (t)/k=2(t). Q.E.D.

The previous lemma implies that we can restrict our input to the
polynomial fields with relatively prime components. Let as analyze the
degrees of expressions occurring in (3).

Lemma 10 Let v(t) a polynomial vector field of degree n with relatively
prime components. Then u(t) = v(t) xv'(t) is a polynomial field of degree
2n — 2 and det[v(t),v'(t),v"(t)] is a polynomial of degree 3n — 6.
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Proof: Writing the components of the vector field v(¢) explicitly shows
that the leading terms of the components v(t) x v/(t) cancel to 0 and the
three leading terms of det[v(¢), v'(t), v’(t)] cancel to 0 as well. Q.E.D.

Example 11 Consider the polynomial vector field
24¢3 — 1212 — 12t + 4
v(t) = | 4413 —60t> + 24t
12t% — 443
which is of degree n = 3. By a direct computation we get
—288t* — 1923 + 2882

u(t) =v(t) x v'(t) = 240t* — 96¢3 + 192¢2 — 96t
912t4 — 22083 + 153612 — 480t + 96

which is of degree 4 and
det[v(t), v/(t),v"(t)] = 1152 (16t> — 6t — 2t + 2)
which is of degree 3.

We can obtain explicit expressions for the formulae appearing in (3)
as follows.

Proposition 12 Let v(t) be a vector field and u(t) = v(t) x v/(t). Then

uxu = det[v,v,v']v
u' xu’ = det[v,v",v"]v+det]v,v v'] Vv’
uxu” = det[v,v,v"]|v+det[v,v v']V
det[u,u/,u”] = (det[v,v',v"])?2.

Proof: By a direct differentiation we obtain

/ / " " / 1" "
U=VXV, U =VXV, U =V XV +VXV

and the proof can be concluded using the standard vector identity
(axb)x(cxd)=[a-(bxd)]c—]a-(bxc)]d.

Q.E.D.

This Proposition explains the special form of the denominator of the

tangent curve in Example 5. It might also help to understand possible
simplifications of the formula (3) for special choices of f(¢).
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5 Conclusion

We presented several results for curves tangent to polynomial vector fields.
We have seen that the Frenet frame and the ratio between the curvature
and torsion are essentially determined by the field. We have also presented
the general formula for rational tangent curves and proved several results
about the degrees of expressions occurring in this formula. We hope that
these results will lead to the full understanding of possible cancellation of
the denominator in this formula.
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Abstract. Vyuzivanie technologii sa v poslednych desatroiach vyvijalo velmi
rychlo a v sGcasnosti ponukaji nové prileZitosti pre vyucbu matematiky. Najmi
integracia dynamickych geometrickych softvérov s 3D tlacou nam ponika moznost’
transformovat’ digitalne reprezentacie trojrozmernych objektov do ich materialnej
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1 Introduction

Understanding three—-dimensional objects from their two-dimensional
representations can be challenging. It means, not all students can easily transform
plane representations (such as drawings, pictures or paper-and-pencil
projections) of geometry solids into the correct mental representations (visual
images). External representations of 3D objects in physical, digital and paper-
and-pencil environment, along with mental images, processes and abilities form
a model of visualisation [1]. These elements complement and influence each
other and altogether play an important role mainly in teaching and learning
geometry. In this paper, we present a brief summary and an example of the
designed worksheets for 11th-grade students, based on the combined use of
physical (3D printed) and digital (dynamic) resources for ‘Cube Cross Section’
lessons. In addition, we intend to share how teachers can print 3D objects using
GeoGebra software to transform digital (virtual) solid representations into their
physical (palpable) form. As stated by [2], images and objects can influence the
way we think about mathematics,” and help us to understand its results.
Following the mentioned, the main aim of the research project is to integrate the
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same external representation of 3D objects in all three working environments
(paper-and-pencil, physical and digital) to support the development of students’
spatial abilities and creation of their visual images.

2 Designed worksheets

The designed material ‘Cube Cross Section’ consists of five paper worksheets
(later W1-W5) complemented by 3D printing and interactive GeoGebra applets.
The PDF files and GeoGebra applets are available to students in a private
Workgroup on the GeoGebra platform. To facilitate the worksheet orientation
and sequencing of the tasks, the same layout was followed in the design.

Worksheet 4

Fig. 1: Layout of the worksheets

At the beginning of the worksheets, there is a list of students’ working
environments (see Fig. 1.a). Each environment has its own symbol and, in
addition, the physical environment is complemented by pictures of specific 3D
printing needed in that particular worksheet. Then, there is one exemplary solved
(see Fig. 1.b) and six unresolved (see Fig. 1.c) tasks for students.

i ® - |

(-

Fig. 2: Solution process in the designed worksheets

The essential difference among W1-WS5 is a varying combination and sequence
of the three working environments (see Fig. 2). For example, in W3, students
initially work with GeoGebra applet and manipulate 3D printing. Afterwards,
they make paper-and-pencil constructions.

To underline, students’ paper-and-pencil constructions are required for
every task in all worksheets. While manipulation with 3D printing and GeoGebra
applets is not in all of them. The goal is to move from 3D physical
representations in a 3D physical environment to 2D paper-and-pencil
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representations in a 2D paper-and-pencil environment through 2D digital
(dynamic) representations in a 3D digital environment (see Fig. 3).

3D physical representation 2D digital representation 2D paper-and-pencil representation

3D physical environment 3D digital environment 2D paper-and-pencil environment
N\ ) N

Fig. 3: Linking representations and environments among worksheets

As mentioned above, the structure of all worksheets is the same, but the
combination of all three environments and linking between them is different in
W1-WS5. The next paragraph is focused on the detailed description of Worksheet
1.

2.1 Worksheet 1

Text Physical and paper-and-pencil environment (see Fig. 2) are those of the
three mentioned in which student solve tasks Cube C1 - C6 from W1. The 3D
printing is generally divided into 5 groups and all categories are handled in W1
(see Fig. 4):
A. Category — transparent (“edge”) and opaque cube models with
intersection plane points. The models are named A10 — A16 and A20 —

A26.1
B. Category —opaque models of intersecting plane. The models are named
B10 — B16.

C. Category — transparent cube models of constructions of cross section
of cube. The models are named €10 — C16.

D. Category — transparent and opaque cube models of cross sections of a
cube. The models are named D10 — D16 and D20 — D26.

Fig. 4: 3D printing used in W1

1 The letter A represents the category. The number 1 (2) represents the
transparent (opaque) cube model. Numbers 1-6 were randomly added to the 3D
printing, regardless of the task number.
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As the combination and sequence of the environments indicate, each task C1-C6
consists of two parts. W1’s task solving process is as follows:
1. Students add 3D printing from categories A-D to cubes C1-C6 and write
their solution in a table (see Fig. 4 and Fig. 5).

!Q! Add the transparent and opaque models to cube C* and sort them in ascending order
from category (A) to category (D). Write your solution in the table.

T it model: A0 D14
ransparent models . B13 . clo .
Opagque models A26 D26
_—

% amel
&
BT g

Fig. 5: Solution process in physical environment

2. Students make paper-and-pencil constructions of the cross section of a
cube by following the written construction steps and name the shape of
the intersection (see Fig. 6). The 3D printing is looked at, used and
manipulated at the same time.

Cube C* (Exemplary solution)

sv Construct the cross-section of cube C* by MNO plane following the written
construction steps and name the shape of the intersection.

H oG Construction steps:
1. MN;M,N € ABC
E i 2. NO;N,0 €BCG
3. OM;0,M € ABF
- 4. Triangle MNO
oi - - 48 S _ .
"
A " - 8

Fig. 6: Solution process in paper-and-pencil environment

As a final point, the non-inclusion of GeoGebra applet is intentional in W1. The
goal is to enhance the opportunity to make connections between the physical and
the paper-and-pencil environment for students. Moreover, to let them see the
same external representation (geometric construction of the cube cross-section)
in two different environments from different perspectives and in different
situations.
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Following the mentioned, there are two extra parts in W1:
1. Bonus task - students take 3D opaque models of category D and
construct the given and missing part of cubes C1-C6 (see Fig. 7).

Bowus Task ." 3’

Take 3D opaque cube models of ‘Category D' and construct the given and missing part of
cube CI-CG6.

Fig. 7: Bonus task in W1

2. GeoGebra applets

a. Visualisation of the cube cross section - the applet can be used
at the end of W1 to make conclusions about different types of
cube sections (see Fig. 8.a). Moreover, it can be used as a
transition from the first to the second worksheet. Students can
rotate the plane and make their own cross sections of a cube.

b. Two parts of a cube - the applet can be used to explain not all
cube dissections are the cross sections of a cube (see Fig. 8.b).
Students can rotate both parts of a cube and the aim is to find
its correct missing part.

Worksheet 1 (Tasks C*-C6) Two parts of a cube (6)
At

Fig. 8: Bonus GeoGebra applets

In addition, the last section represents how teachers can print 3D objects using
GeoGebra software to transform digital (virtual) solid representations into their
physical (palpable) form.
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3 3D printing with GeoGebra software

The GeoGebra platform provides a detailed ‘Tutorial for 3D Printing with
GeoGebra’ available at https://www.geogebra.org/m/dc4gewrn or use the QR
code in Fig. 9.a.

a. b. c.
Fig. 9: 3D printing with GeoGebra

To summarize the 3D printing process, the main steps are listed below:
1. step - find or make your own 3D objects in free online GeoGebra Apps.
2. step - export this file to STL format: Main Menu — Download as —
STL and finally EXPORT your file (see Fig. 9. b).
3. step - set the object properties (see Fig. 9. c).

Although there are challenges in 3D printing, as you would expect, there is no
reason to give it up. All you need is practice. Just explore and have fun.

4 Conclusion

This paper presented a brief summary and an example of designed worksheets
based on the combined use of physical (3D printed) and digital (dynamic)
material for solid geometry lessons. The aim was to present an integration the
same external representation of 3D objects into the three working environments.
In addition, the 3D printing process with GeoGebra software was introduced.
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Abstract. Paper is aimed to present information about on-line educational materials
developed in the Erazmus+ project DIAD-Tools to support teaching of subjects
such as Technical Drawing, Descriptive Geometry, or Constructive Geometry at
secondary and tertiary level in engineering educational programmes.

Key words: technical drawing, educational video, interactive learning material

1 Introduction

Descriptive geometry was a compulsory subject proudly called ,.the queen of
all technical disciplines®, and not so long ago it was also one of the important
subjects at the secondary schools. Nowadays, hardly any of the secondary
school graduates heard the name of this discipline, and few of them have
experienced subject related to technical drawing at the professionally oriented
secondary schools, perhaps with an exception of those oriented at civil and
mechanical engineering domains. However, every professionally reliable
engineer should be aware of space relations, as constructor of space objects and
designer of the space arrangement itself. Lack of spatial abilities and
understanding leads to many problems also in a lot of other domains, not only
those related to technical disciplines.

Erazmus+ project DIAD-tools is an international project joining powers of
secondary and tertiary school teachers to improve the situation in technical
skills of graduates at both types of schools, technical secondary schools and
technical universities, see [1]. Five European countries participate in this
project - Estonia, Latvia and Lithuania, Poland and Slovakia. Partner
organisations vary from secondary vocational schools to technical colleges and
universities. The main goal of the project is to develop sample examples of
instructional materials, interactive and dynamic, which could be used as
introduction to teaching, learning and training subjects related to Descriptive
geometry and Technical drawing. The idea is to establish an open learning
platform available on web with a variety of training materials. Finally, the
realistic expectations went to development of about 20 dynamic videos
bringing basic information on different topics from the above disciplines. All
materials are provided in all 5 language mutations and in English version. They
were tested and updated according to needs of customers from all participating
countries. In addition to videos, interactive materials developed in GeoGebra
environment are available for on-line use, providing opportunity to investigate
presented information in step-by-step mode and with individual speed, [2].
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2 Description of materials

Scenarios and design of all videos were carefully planned in advance and
discussed with the project partners. Videos lasting about 5 minutes each were
designed to contain informative text bringing short factual pieces of knowledge,
possibly enriched by dynamic figures interpreting presented facts in more
illustrative way. Practical examples were invited suitable for the chosen
domains and level of foreseen target group of students.

Each partner was responsible for one separately chosen group of related
topics. The distribution of work was decided to cover the following 4 main
domains and topics:

1. Execution of drawings, geometric drawing
e Scales

Lines on engineering drawings

Dimensioning

Geometric relationships

Polygons

2. Basics of projection drawings, views and sectional views, solids
e Projections

Variations of prism

Sectioning

Reconstruction

Solids

3. Joints of parts, working drawings of parts
e Threads and threads representation in drawings
Threaded fastenings
Separable and permanent joints
Assembly drawing
Detailing assembly drawing

4. Construction drawings

e Architectural and construction drawings general principles
Graphic designations of the building materials
Dimensioning in architectural-construction drawings
Scales at architectural-construction drawings
Construction

Additionally developed materials are available as tutorials on how to use
some of the commands and related geometric constructions in the most used
and popular CAD systems, e.g. AutoCAD or Onshape, innovative on-line
design system available on any device that unites modelling tools and design
data management in a secure cloud workspace, never loses data, and eliminates
design gridlock.
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2.1 Execution of drawings, geometric drawing

Some most important basic information on drawing practise is presented in
videos form this part, developed by partner form the Vytautas Magnus
University, Agricultural Academy in Kaunas, Lithuania. Normative about used
lines, scales (Fig. 1) and dimensioning principles are presented in accordance to
EU ISO standards.

P J 11 - Erasmus+

Note: Dimensional values are independent to the scale ratio

Fig. 1: Example from video Scales

Some practical examples of used geometric relations in design are presented
for modelling in Onshape system, see Fig. 2.

_____ | tools w - Erasmus+

Geometrlc relatlonshlps on Onshape system

i BEPBE-00B4TEE-0 ODVBZFSaS 0
o et

No. 2017-1-LT01-KA202-035177

Fig. 2: Tutorial for modelling in CAD system
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2.2 Basics of projection drawings, views and sections, solids

Slovak University of Technology was partner responsible for development of
materials in this section. Educational videos contain information on basic
projection methods mostly used in mechanical and construction engineering
drawings. Animated pictures are intended to help students in understanding e.g.
Monge method or Multiview projection, as well as basic principles of linear
perspective, Fig. 3, or object reconstruction from related views, Fig. 4.

- Erasmus+

Two-point perspective is central projection with 2 vanishing points,
when one object principle direction is parallel to image plane.

\
R\

No. 2017-1-LT01-KA202-035177

Fig. 3: Linear perspective — video Projections

- Erasmus+

=—===£00lS

Back face of the object is shifted
to the real position in the space
in front of the vertical plane.

Fig. 4: Reconstruction — video Reconstruction
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Material for training spatial skills and abilities of spatial imagination
includes moving 3D views of prisms truncated or with some removals,
accompanied by their 2 or 3 related orthographic views, see Fig. 5.

- Erasmus+

=—===t00lS

Solid 4 - truncated prism with two removals

No. 2017-1-LT01-KA202-035177

Fig. 5: Example from video Variations of prism

Examples of viewed objects, distribution of views and spatial relations
between separate views can be also investigated in related Interactive materials
— Monge Method, Multiview Projections EU norm, Multiview Projections -
USA norm, Intersections of solid, Object Reconstruction, example see in Fig. 6.

About project  Training materials  Partners  Interactive materials
FIgUIE SIZE Call DE AUUSIEU WILL UIE THI0USE
scroller in the graphical window, and 3D scene
«can be revolved by the left mouse button
Stereoscopic 3D view for red-green glasses
can be settled by right mouse click in graphical
window and choosing the projection method.

A -FRONT VIEW
in vertical image plane
B - TOP VIEW
in horizontal plane  rotated to image plane
a =556
——
C - LEFT SIDE VIEW

in side plane rotated to image plane

D - RIGHT SIDE VIEW
in plane parallel to side plane

rotated to image plane
E - BOTTOM VIEW

in plane parallel to horizontal plane
rotated to image plane

F - BACK VIEW
in plane parallel to vertical plane

»
iz

w4 20020 o a 2

Fig. 6: Multiview Projection EU Norm
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2.3 Joints of parts, working drawings of parts

Materials in this section were prepared by partner from Riga Technical
University in Latvia. Educational videos bring detailed information on threads
and various types of joints and their parts, and they contain many practical
examples about rules for marking and presenting joints on working drawings,
Fig.7. Many animations included in these materials are aimed to motivate
students, raise their interest and help them to understand the topic better, Fig. 8.

=—===100lS

- Erasmus+

Example of Working Drawing of Welded Joints

¥

i >
i

i

17-1-LT01-KA202-035177 Welded Joints

Fig. 7: Example from video Separable and permanent joints

- Erasmus+
=—===t00lS

1. Analyze the purpose, principle of operation and field of application of the given
machine. This will help to understand the functional requirements of individual parts
and their location.

2. Examine thoroughly the external and internal features of the individual parts

3. Choose a proper scale for the assembly drawing

4. Estimate the overall dimensions of the views of the assembly drawing and make the
outline blocks for each of the required view, leaving enough space between them for
indicating dimensions and adding required notes

No. 2017-1-LT01-KA202-035177 Steps to Make an Assembly Drawing

Fig. 8: Steps to make an Assembly Drawing
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2.4 Construction drawings

Partner from Silesian University of Technology in Gliwice, Poland, was
responsible for development of materials in this group, aimed mostly to
students of construction engineering and architecture. Many interesting
motivation figures are included in videos, supplemented by practical examples
of general principles in architectural and construction drawings, Fig. 9, special
markings and dimensioning rules and construction elements, see Fig. 10.

4.1 Architectural and construction drawings general principles

- Erasmus+

=—===£00lS

N

Windows & Doors

No. 2017-1-LT01-KA202-035177

Fig. 9: Example from video on general principles

4.5 Construction elements

- Erasmus+

Truss elements transfer loads to the walls
No. 2017-1-LT01-KA202-035177

Fig. 10: Detail from construction element
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3 Conclusions

In this paper we focused on presentation of instructional materials developed in
the Erazmus+ European project in 6 language mutations and accessible free at
the platform developed by project partners available at the project page address.
Materials are suitable for subjects related to Descriptive geometry and
Technical drawing at a range of schools, from vocational secondary schools to
the technical universities. Design and contents of presented videos and applets
was influenced by various constraints, while differences in the basic curricula
of the above mentioned subjects in partner countries was one of the most
limiting, see [3]. Materials were designed to be as short as possible, but to bring
important pieces of information for general understanding of principles and
rules for production and reading of technical documentation.

DIAD-tools materials are available free at the webpage of The Lithuanian
Society for Engineering Graphics and Geometry [3]. Project partners’
consortium responsible for development of educational materials and their
testing consisted of the following institutions:

P1. Vilnius Builders Training Centre, Lithuania

P2. Slovak University of Technology in Bratislava, Slovakia

P3. Ida-Virumaa Vocational Education Centre, Sillamée, Estonia

P4. Vytautas Magnus University. Agriculture Academy, Kaunas, Lithuania

P5. The Lithuanian Society for Engineering Graphics and Geometry,
Kaunas, Lithuania

P6. Riga Technical University, Latvia
P7. Panevézys University of Applied Sciences, Panevézys, Lithuania
P8. Silesian University of Technology, Gliwice, Poland
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Abstract. The visualization that is possible with today’s dynamic software enables
the student to see and explore mathematical relations and concepts that were
difficult to show in past prior to technology. The most analysis show that students
who use technology in their learning had positive gains in learning outcomes.

In the paper, we highlighted some opportunities and examples on how GeoGebra
can be used in classrooms to explore some basic concepts in spatial geometry.
GeoGebra has many possibilities to help students to get an intuitive feeling and to
visualize adequate math process. In this paper we present our interactive education
materials collected in GeoGebra book ,,Solids Vocabulary“. It is designed
specifically for teaching spatial geometry on interactive and creative way.

Keywords: GeoGebra, Dynamic Geometry Software, Solids, Constructive
education

Kli¢ova slova: GeoGebra, Dynamicka geometrie, Konstruktivni vyuéovani, T¢lesa,

1 Digitalni vzdélavaci zdroje

Studenti stfednich i vysokych Skol v soucasné dobé bézn¢ pracuji s°internetem
a pouzivaji ho k vyhledavani informaci nejrtiznéjsiho charakteru. Podle fady
prazkumt u nés i v zahrani¢i patii k nejcastéjSim ¢innostem, které zaci realizuji
prostiednictvim internetu ve svém volném Case, piedevsim hrani her, sledovani
videa a chatovani; na druhém misté je vyhledavani informaci potfebnych pro
studium [10]. Internet a vyukové webové stranky proto dnes patii k ucebnim
pomickam stejné jako tisténé ucebnice Ci sbirky tloh a je zcela jisté, ze jejich
vyznam pro uceni a vyu¢ovani dale poroste.

Vyuziti pocitacovych programii ve Skolské matematice je mozné dvojim
zpusobem. Prvni spociva v feseni standardné zadanych uloh pouzitim piikaza
daného software. V danou chvili zdk ani nemusi znat postup ¢i vzorec vedouci
k vysledku, software provede vypocet za néj; z pohledu Zéka jde tedy o jakousi
Cernou skiinku. Druhy zpasob spocivd v podpofe aktivni prace zéka,
povzbuzeni k vytvareni a ovéfovani hypotéz a experimentovani, jez vede
k hlubsimu pochopeni souvislosti [8].
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2 GeoGebra — software dynamické geometrie

Dynamicky geometricky program tvofi geometrickou scénu v zavislosti na
volitelnych parametrech. Geometrickymi objekty na scéné muze uzivatel
manipulovat pii zachovani zadanych polohovych a metrickych vlastnosti.
Experimentovani s dynamikou systému, pozorovani vlivu parametr na tvar
geometrickych objektd i tvorba a ovéfovani hypotéz ptispivaji k lepsimu
porozuméni matematiky na vSech stupnich skol.

Pozitivni vliv dynamickych geometrickych programi dokladad ftada
kvantitativnich i kvalitativnich vyzkumid. Zaci dosahuji vyrazné lepsich
vysledkli ve standardizovaném testu na porozuméni geometrickym pojmim a
geometrickou predstavivost. Zaci vyuzivajici dynamickou geometrii prokazuji
hlubsi a trvalejs$i zapamatovani ziskanych poznatka (cit. podle [11]).

Poslednich deset let je celosvétové nejpouzivanéjSim programem Skolské
matematiky GeoGebra. Instalace i online verze jsou zcela zdarma, nen8ro4n0
na hardware, zadavani objektt je didakticky promyslené a nastroje pokryvaji
Skolské kurikulum od zakladni skoly az po zéklady calculu.

Prostfedi GeoGebry integruje vice edukacnich prostfedi: Nakresna,
Algebraicka reprezentace objektu, CAS (Computer Algebra System), Tabulka,
atd. Reprezentace problému v riznych modelech — numerickém, algebraickém,
symbolickém i grafickém napomahd pochopeni souvislosti mezi riznymi
pristupy k matematickym objekttim.

Na serveru geogebra.org je pies milion appleti sdilenych uZivateli.
Bohuzel, vyhledavani dokument k danému tématu je neptehledné, kvalita a
matematicka spravnost nejsou nijak garantovany, hodnoceni je ponechano
udilenim “like®.

3 Vyuka stereometrie uzitim GeoGebry

Prostorova geometrie patii dlouhodobé ke kritickym mistim matematického
vzdélavani. Dle [9] se zde vyrazné projevuje, Ze uditelé uci tak, jak byli sami
uceni, jak tomu rozumi a jak ulohy sami feSi. Nedostatky ve vyucovani
geometrii souviseji s nedostatky v geometrickém vzdélavani uéiteltt. Odrazem
predstav o axiomatické vystavbé geometrie je soustiedéni Skolni geometrie na
rysovani a terminologii. Geometrie by vSak méla byt od samého pocatku
orientovana na poznavani prostoru, vnémz zak zije, a na rozvijeni
piedstavivosti [6].

Maloktera oblast skolské matematiky je tak vhodna pro vyuziti GeoGebry,
jako je stereometrie. Zejména pro Zaky se slabsi prostorovou piedstavivosti je
kolikrat jedinym moznym nastrojem pro nahlédnuti vzajemné polohy 3D
objekti. Jist¢ by etapé virtualnich manipulaci v poc¢itacovém 3D prostredi méla
predchazet manipulace s readlnymi objekty, ale pfi zkoumani slozitéjsich téles a
scén jiz takovou moznost nemame.
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Predstavivost, a to nejen geometrickd se obecné rozviji praxi. GeoGebra
v kratkém Case zprostiedkuje zaktim nahled fady geometrickych situaci a
roz§ituje tak evidované modely i zkusenosti.[11].

Prizkum [4] prokazal pozitivni vliv software dynamické geometrie na
konstrukci prostorovych objekti a pfi urCovani objemid a povrchid. MoZnost
zkoumani dynamického rysu z rliznych uhli pohledu pfispiva k prohloubeni
poznavaciho procesu zaki.

4 Slovnik téles

Soubor hypertextovych dokumenti s interaktivnimi applety je vytvofen jako
tzv. GeoGebra kniha s nazvem ,,Slovnik téles* [15]. Slovnik je navrzen jako
pomucka k vyuce téles na zakladni Skole od uvodniho seznameni s typy téles a
zékladnimi pojmy az po procviCovani aplikaci vypoctu povrchu a objemu.
Kazdému z téles krychle, kvadr, jehlan, valec, kuzel a koule je vénovana jedna
kapitola, spole¢né jsou uvodni a zavéreény oddil se vzory pro vyukové listy
vytvafené samotnymi zaky.

Pocita¢ by nemél slouzit jen k prezentaci obrazkd a videa, sebelepsi
prezentace trvajici déle nez deset minut vede ke ztrat¢ pozornosti. Pokud na
pocitaovou animaci nenavazuje dalSi Cinnost, napf. prace s applety,
pracovnimi listy ¢i kauzalni rozhovor, zlstava zaktim skryta podstata véci.
Proto jsou kapitoly Slovniku téles kombinaci rtiznych forem vzdélavani
prosttednictvim poéitate. Uvodni applet demonstrujici probiranou vlastnost, je
nasledovan testovymi otazkami i pisemnymi tkoly v pracovnim listu.

Nasi snahou bylo vyuzit moznosti dynamického software, nahradit pasivni
pozorovani interaktivnimi prvky a postupné piidavat ukoly pro samostatné
konstrukce zakd. Soucasti vyukového materidlu jsou interaktivni applety pro
zobrazeni téles, dokreslovani siti téles v prostfedi GeoGebra a feSeni testovych
otazek.

4.1 Povrch aobjemy

Velkou pozornost jsme vénovali povrchu a objemu téles. Tato témata
povazujeme za dlouhodobé zanedbavana a problematicka, pfitom pravé zde se
da velmi dobfte uplatnit objevitelsky piistup.

Zatimco pro povrch téles madme v GeoGebfe neocenitelného pomocnika
v piikazu Sit( <Mnohostén>, <Cislo>), podpora vyuky objemu je zastoupena
jen nastrojem pro jeho vypocet. Webovské stranky Objem krychle a Objem
kvadru obsahuji interaktivni applety s testovymi otdzkami pro stavby z kosti¢ek
a urceni objemu.
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|| Ukaz objem
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Objem = 12 krychiovych jednotek

Obr. 1: Objem kvadru — ptidavanim krychlovych jednotek uréime objem.

Odvodit s zaky objevitelskym zptisobem vzorec pro objem jehlanu je
komplikovangjsi. Ve Skolské praxi se ¢asto spokojime s vyslovenim vzorce bez
dikazu, v lepsim piipadé s odvolanim na Cavalieriho princip. Davetivejsi
studenty by mohl ptesvédcit rozklad krychle na na tfi shodné ¢tyfboké jehlany.
Podstavy jsou sousedni stény krychle, vyskou je hrana na podstavu kolma. (viz
netvoii tfi shodné jehlany, jsou to jen jehlany stejného objemu. Jak ale dokazat,
ze dva jehlany se shodnymi zakladnami a vySkami maji stejny objem?

VyieSeni tohoto problému patii mezi vyznamné vysledky antické
geometrie. Dle Archiméda (287-212) ptislusi ptitknout prvenstvi ve formulaci
poucky Démokritovi z Abdér [ 14].

Dle Démokrita (460-370) se v8e, co se nachazi v realném svété, sklada
z malych, lidskym okem neviditelnych a dale jiz nedélitelnych atomu. Jeho
odvozeni vzorce pro jehlan muselo byt velmi podobné pfistupu, jenz v 17.
stoleti popsal Bonaventura Cavalieri (1598-1647). Metoda porovnavani
nekonecné tenkych vrstev téles mélo velky vliv na jeho soucasniky i
matematiky pozdgjsiho obdobi. Leibniz (1646—1716) napsal, ze Galilei a
Cavalieri byli prvni, kdo zacali odhalovat drahocenné metody a postupy
Archiméda.

Eukleides (asi 325-260) ve 12. knize Zékladli dokazuje rovnost objemil
jehland o stejnych podstavach a vyskam Eudoxovou exhaustadni metodou.
Tedy rovnéz tivahami, jez daly vzniknout infinitesimalnimu poc¢tu. O Eudoxovi
z Knidu (408-355) je znamo, Ze se stal ¢lenem Platonovy Akademie. Platon
(427-347) byl nesmifitelnym odpiircem Démokrita a ziejmé od né&j vzesel
podnét vyloucit z diikazi vSechny uvahy o atomech.

Je dulezité¢ seznamit jiz na stfedni Skole zaky s ivahami o nekonecné
malych objektech, pfi spravném vedeni mohou byt néktefi uchvaceni stejnym
zpuisobem jako soucasnici Newtona a Leibnize. Je dobré zaéit nazornymi
problémy rovinnych objektii. Eudoxoviv rozklad Ctyfsténu se stézi da oznadit
jako nazorny. Je t€zké narazet na infinitezimalni Givahy a nemoci se spolehnout
na geometricky nazor. Ve $kolské matematice se uziva Cavalieriho princip (viz
Cavalieriho princip, [15]).
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Dalsi moznosti je nazorny Cinsky dilkaz, jenz je popsan v knize Devet
kapitol matematického uméni. Tato kniha pochazi z ptiblizné stejné doby jako
Eukleidovy Zaklady a v ¢inské matematice hraje i podobnou ulohu. Témét
kazdy ¢insky matematik do 20. stoleti se na tuto knihu odkazoval [3].

Vyznamny ¢&insky matematik Liu Huie (20-280) popisuje rozklad
trojbokého hranolu na ¢tyiboky (Zluty) jehlan a trojboky(&erveny) jehlan — viz.
Obr. 2. Postupnym dopliiovanim hranold ukdZeme, Ze objem Zlutého jehlanu je
dvakrat vétsi, nez objem cerveného jehlanu. Odtud objem jehlanu je tfetinou
objemu hranolu se shodnou podstavou a vysSkou. Animace dukazu je
zpracovana v materialu Volume of Pyramid na serveru geogebra.org.

Obr. 2: Cinsky dikaz objemu jehlanu — format GCG_Caption

5 Zavér

Pfi osvojovani matematickych védomosti s podporou modernich technologii
zalezi vice na zpisobu jejich integrace nez typu pouzitych prostfedkd. Hlavnim
faktorem, ktery ovliviiuje vyuZzivani technologii ve Skolské matematice, se
stava ucitel, zejména jeho didaktické dovednosti a ICT kompetence [8].

Nespornou vyhodou integrace pocitace do vyuky je diferenciace vyuky a
moznost zakd fe§it Glohy svym tempem. Velky rozdil mezi studenty je ve asi
nejvetSim problémem pfi organizaci vyuky. Je tieba mit pfipraveny piiklady
pro nadané déti, ale na druhé stran€ jsou i zaci, ktefi nepfijmou intuitivni
ovladani GeoGebry a zivelné experimentovani s nastroji. Doporucujeme
ptipravit si pro takové zaky vytistény navod nebo applet s krokovanou
konstrukei, ptip. instruktazni video. Uloha ugitele jako koordinatora prace déti
je nezastupitelna, prace na pocita¢i nemiZze byt zcela samostatna, dilezita je
zpétna reflexe a diskuse o nalezenych vlastnostech a feSenich tuloh. U¢itel musi
zaky usmérniovat a podnécovat jejich do jisté miry samostatné objevovani a
zkoumani danych geometrickych vlastnosti a problémi.

Podle naseho nazoru ma GeoGebra potencidl pokryt témata celé Skolské
matematiky. Doufame, Ze se podafi spojit Usili vSech nadSencti tohoto software
a vytvorit jeden prostor soustfedici vSechny kvalitni vyukové materialy, jez
mohou byt ucitelim podporou pfi tvofivé integraci GeoGebry do vyuky
matematiky.
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Discrete connections on triangle meshes
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Abstract. In this paper we discuss constructing parallel tangent vector fields
on discrete surfaces. We introduce analogies of notions from differential
geometry for discrete surfaces, which we represent by triangular meshes, and
we show how to use these concepts when constructing tangent vector fields
that are parallel over the whole surface. At the end we describe algorithm for
constructing these vector fields and show some examples.

Keywords: Discete surfaces, discrete connections, parallel transport, discrete
differential geometry.

1 Introduction

Problem of constructing parallel tangent vector field on discrete surfaces
was described in [1] and [2], but our aim is to build formal mathematical
definitions of all used terms.

We also present algorithm for constructing such fields on given surface.
The algorithm is based on algorithm introduced in [2].

This paper sums up basic thoughts of the problem. Most formal def-
initions as well as context from theory of smooth surfaces can be found
in my bachelor thesis [3].

2 Discrete differential geometry

In this section we present theory of discrete surfaces, tangent vector fields
and discrete connections. For most formal definitions see [3, Chapter 2].

2.1 Discrete surfaces

We represent discrete surfaces by triangular meshes. We describe the
surface as triple S = (V, E, F), where V denotes set of vertices, E set
of edges and F' set of faces. We need following assumptions: the set V
of vertices is finite, the surface is closed and oriented.

We use following notation. Let S = (V, E, F) be a discrete surface.
For vertex v € V we denote F; the star of the vertex. For face f € F),
v € V, we denote 0y angle by the vertex v.

For each vertex of a discrete surface we define its Gaussian curvature.

Definition 1. Let S = (V, E, F) be a discrete surface. For vertexv € V
we define its discrete Gaussian curvature as

K, =27 — Zﬂf.

feFy
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Our aim is to find tangent vector field that is parallel along every curve
on a discrete surface. By discrete curve we mean a sequence of neighbour-
ing faces. We can also desribe discrete curve as a sequence of dual edges
or as a sequence of inner edges of the curve.

For curve formed by faces F for a vertex v € V' de define its discrete
geodesic curvature in face f € F);.

Definition 2. For a curve formed by faces F = (f1, fa,..., fn) for
v € V, we define discrete geodesic curvature in f;, i € {1,2,...,n} as

Kg(fi) = 9i~

Now we can formulate discrete versions of theorems from classic dif-
ferential geometry. Proofs for both theorems can be found in [3].

Theorem 1 (Discrete local Gauss-Bonnet theorem). Let S = (V, E, F)
be a discrete surface,v € V, ¢ = Ff = (f1, fa,..., fn), n € N be a discrete

curve on S. Then
n

K, =21 =Y Ky(f).

i=1

Theorem 2 (Discrete Gauss-Bonnet theorem). Let S = (V,E,F) be
a discrete surface. Then
Z K, =2my,

veV

where x = |V| + |F| — |E| is Euler characteristic of S.

2.2 Discrete connections

We define tangent plane and tangent space of a discrete surface.

Definition 3. Let S = (V,E, F), f € F. We define tangent plane of f as
set of all directions of f and denote it asTyS. We denote T'S = UpepT}S.

We are looking for a tangent vector field, which means set of vec-
tors, one for each face of a surface. We can describe tangent vector field
by so called discrete connections. Connections define how tangent vector
changes as we move it from one face to neighbouring one along dual edge,
or equivalently, across shared edge.

If two neighbouring faces f;, f; lie in plane, we can traslate tangent
vector from f; to f; so that the two vectors are parallel. Otherwise,
we can unfold the faces to plane, translate the vector and then fold
the faces back to original configuration. Such transport of a vector is
defined by Levi-Civita connection.
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Definition 4. Let S = (V,E,F) be a discrete surface. Discrete Levi
-Civita connection is a map Yo : T'S — TS, that to vector u; € Ty, S
assigns vector w; € Ty,S in neighbouring face f; so that the two vectors
are parallel when we unfold the faces to plane.

As we move vector along dual edge, we can rotate it by some angle.
The angle decribes general connection as a deviation from the Levi-Civita
connection.

Definition 5. Let S = (V,E,F), E' be a set of dual edges os S. We
define discrete connection as a map ¥ : E’' — R, that to dual edge
(fi, f;) assigns an angle —a, where 4,5 € {1,2,...,|F|}, i # j.

If we translate vector u from one face to another face with respect to
some connection, we call the new vector parallel transport of the vector u
and we say that the two vectors are parallel with respect to the connection.

As we can move vector from one face to neighbouring face, we can
move it along a closed curve. We denote the map that to vector u € TS
assigns vector «' € TS after it was translated along closed curve c as IT// .

Our task is then to find tangent vector field that is parallel along
every curve on the surface. However, if we move a vector along a closed
curve, the vector may not end up exactly where it started. We define
discrete holonomy group to describe this phenomena.

Definition 6. Let S = (V,E,F), f € F. Set

(T Ty S — T, S; = (fi,-.-, fn)yn €N closed curve on S, f1 = f}
with composing forms discrete holonomy group in f. We denote it Hy.

We call the angle between vector in face f; and its parallel transport
to the same face a discrete holonomy.

Definition 7. Let S = (V,E,F), ¢ = (f1,---,fn),n € N be a closed
curve. We denote angle between vector w € Ty, S and its parallel transport
along ¢ with respect to connection ¥ back to face f1 as h.(f1) and we call
1t discrete holonomy of curve ¢ with respect to ¥ in face f;.

For a closed curve its holonomy with respect to a connection is equal
in every face, thus we can denote holonomy of a curve c as h..

To get parallel tangent vector field along every curve, we need to find
connection for each dual edge so that discrete holonomy group of every
curve on a surface is trivial in every face. We will call these connections
trivial connections.
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Thus for S = (V,E,F) we want to find connections that describe
tangent vector field with zero holonomy of every curve on the surface.

For curve ¢ = F, v € V, its holonomy with respect to Levi-Civita
connection is given by the following relation

he = Z Kg(f)

feF;

To get zero holonomy, we need to redefine geodesic curvature in each
face so that

Z Kq4(f)=0 (mod 27).

fEF

From discrete local Gauss-Bonnet theorem (1) for v € V' we obtain

K, =27 — Z K,(f)=0 (mod 2m),
JeFy

thus Gaussian curvature of v must be equal to 27k, where k € 7Z is
called index of the vertex v.
Discrete Gauss-Bonnet theorem (2) gives us condition for the indices:

Z K, = Z 2k = 2.

veV v; €V

Therefore indices of all vertices of the surface must sum up to Eu-
ler characteristic x of the surface. In practice, we choose some vertices
and prescribe their indices so that they sum up to x and we let rest
of the indices (and thus rest of Gaussian curvatures) to be zero. We will
call vertices with non-zero indices singular vertices.

This approach provides we are able to find connections that desribe
tangent vector field with zero holonomy along curves Ff, Vv € V. We
can show that every curve on a discrete surface can be written as linear
combination of curves F,, v € V and generating non-contractible curves.
It follows that we need to assure that there is zero holonomy along gen-
erating non-contractible curves and then we can find desired connections.

3 Algorithm

This algorithm is based on algorithm by K. Crane presented in [1].

For given surface S = (V, E, F) and set of singular vertices with pre-
scribed indices we want to find connection for each (dual) edge that de-
scribes tangent vector field parallel along every curve on the surface. We
choose set of generating curves G formed by curves F),v € V and 2g
generating non-contractible curves, where g is genus of the surface.
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Fig. 1: holonomy of non-contractible curve

For every curve ¢ € G we compute its holonomy h. with respect
to Levi-Civita connection. For curves F,,v € V it holds h, = K,. Fig-
ure 1 indicates how to compute holonomy of a non-contractible curve.

For each curve ¢ € G we obtain equation

a—c>'?:hcv

where a; € {~1,0,1}Zl describes which inner edges form curve ¢ and
7 € Rl is wanted vector of connections.

Vectors a, for each contractible curve ¢ € G form incidency matrix
for vertices and edges dy € {0, 1HVI*IEl where

+1, if edge j is incident with vertex 1,
(do)ij =

0, otherwise.

Vectors a. for 2g non-contractible curves ¢ € G form incidency matrix

H < {0,1}29%IZI where

(H), ; = +1, if edge j is inner edge of non-contractible curve i,
b 0, otherwise.

By joining these two matrices we got matrix of system of linear equa-

tions A = ((11{0>, where A € {0, 1}|V\+29X\E\.

_)
Right side of the system is formed by vector b € RIVI+29 where

(b)i=

— he, — 2k, if ¢; = F, v; singular with index k;,
he;, otherwise.

Vector @ € RIZl of connections we are looking for is then given by sys-
tem od linear equations

AT =1,

The system does not have an unique solution, so we choose the one
that is closest to the Levi-Civita connections, which is the solution with
the least norm



202 Vréablikova Jana

7= arg%ninHAﬁ —b||.

As we have vector Z of connections for each edge, we can choose
tangent vector in one face of the surface and using breadth-first search
translate it to neighbouring triangles rotating it by the given connection
when crossing shared edge.

4 Examples

Here we show some examples of results of the algorithm. Algorithm was
implemented in Wolfram Mathematica [4], triangle meshes were imported
from JavaView [5].

Fig. 3: discrete torus with no singular vertices (left) and various singular
vertices (right), generating non-contractible curves denoted in green

5 Conclusion

We have presented some theory for consturcting parallel tangent vector
fields on discrete surfaces. It would be interesting to continue studying
these surfaces from the perspective of classic differential geometry as this
approach can bring effective algorithms for such constructions.
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Abstract. The paper deals with some neglected views on simplices and polytopes
focussing on a Euclidean place of action. It presents an elementary geometric
approach of translating some classical triangle centres to tetrahedrons and simplices
as well as polyhedrons and polytopes, which are equifaced with respect to
congruences as well as similarities. Many properties of equifaced tetrahedrons are
well-known and just repeated. New might be results on isodynamic points as well as
on their stellae octangulae. The aim is to present a list of topics, which could earn
recognition and to stimulate for deeper research on some of the posed open problems.

Key words: tetrahedron, simplex, equifaced polyhedron, similarfaced polyhedron

1 Introduction

The content of this paper is a roundup of a lecture given at the 5" Slovak-Czech
Conference on Geometry and Graphics 2019. A more detailed presentation is
reserved to other publications.

The standard point of view of a polyhedron or, in higher dimensions, a
polytope is that of objects, which have vertices, line segments as edges, and
domains of linear subspaces as faces, c.f. [1], [2], [4], [6], [16], [25] and, among
others, also the “dictionary” [24]. Even so we follow this point of view it is worth
mentioning that faces could be defined as surfaces with curvature, too, cf. [15].

Furthermore, besides the usually used Euclidean (hyper-) space as place of
action, a treatment in projective or affine spaces and in non-Euclidean spaces
would open up for many interesting questions. E.g., a generic triangle in the
hyperbolic or elliptic plane has four circumcircles, a tetrahedron in a hyperbolic
or elliptic space has eight circum-spheres. What about the configuration of their
centres? What about other remarkable simplex centres? A generic tetrahedron
gives rise to a Stella Octangula, does this concept make sense in a hyperbolic
space, where each edge has two midpoints? In the following we refrain dealing
with this this point of view and restrict ourselves to the Euclidean case.

In Chapter 2 we mention a generalised Desargues’ configurations as an
example of a projective geometric interpretation as images of cross polytopes.

In Chapter 3 we translate some classical triangle centres (see [12]) to
tetrahedrons and simplices in Euclidean spaces. For tetrahedrons the elementary
geometric treatment, combined with a 3D-graphics/calculation tool, gives rise to
a broad exercise field for Maths/Geometry courses.

Chapter 4 concerns equifaced tetrahedrons and their higher dimensional
counterparts in higher dimensional Euclidean spaces. Unlike n-simplices,
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equifaced tetrahedrons need not be regular. Stellae octangulae based on them
allow (restricted) motions of one tetrahedron against the other.

Chapter 5 collects known results on polyhedrons, which are equifaced in the
sense of having congruent faces. Simple elementary geometric principles allow
to construct such polyhedrons. The question to construct a certain type of
polyhedrons from a set of given congruent triangles can be answered for
octahedrons, c.f. [Weiss]. Infinite polyhedrons with congruent faces occur in
origami and miura ori, see e.g. [Wiltsche] and [20].

The last Chapter 6 deals with polyhedrons, which are equifaced in the sense
of having similar faces. While one can construct many even closed polyhedrons
with triangular faces, the author could find only one type of closed polyhedrons
with similar quadrangular faces.

2 A theorem on perspective n-gons

In the following we present an example of special polytopes considered in
projective spaces.

H. Ebisui discovered that for perspective quadrangles the intersections of
corresponding sides define lines, which have a common point, (in Fig. 1a the
point H), see [22]. This connects to the classical theorem of Desargues
concerning perspective triangles, which allows an interpretation as image of a
(regular) octahedron under central projection, see Fig. 1b.

Fig. 1: a) Perspective quadrangles define perspective triangles (centre H),
b) Perspective triangles can be interpreted as images of faces of an
octahedron.

It turns out that Ebisui’s discovery also can be interpreted as central
projection of opposite faces of a cross polytope. For dimension 2 this principle
comprises the Theorem of Fano and it can be extended to n-gons in any
dimension, see [22]. As the analytic treatment only uses coordinates with values
0 and 1, generalisations to any commutative field with characteristic # 2 are
possible, too.
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3 Elementary geometry with simplices

In this chapter we translate some classical remarkable points and lines of
a triangle to higher dimensions. It turns out that, in higher dimensions, there can
be defined different types of such a remarkable element.

3.1 Centroids connected with simplices

Definition 1: The “d-centroid” Cq (1< d < n) of an n-simplex S, in an
n-dimensional Euclidean space is the centroid of all d-faces Sq of S .

While the centroids Co and C, coincide and are affine geometric properties of
Sn, the other centroids are Euclidean properties only. E.g., for a triangle the
vertex centroid Co coincides with the area centroid C,, but they are, in general,
different from the edge centroid Ci. Equilateral triangles are characterised by Co
= C; = C; . For tetrahedrons the property Co= C; = C, = Cj3 characterises those
having congruent face triangles. Such tetrahedrons are called “equifaced” and
need not be regular. It is obvious, how to proceed in higher dimensions.

3.2 Altitude sets of simplices

Definition 2: The “d-altitude” of a simplex S, in a Euclidean n-space is the
common normal of a d-face and its opposite face; (d < n/2).

A triangle has only the single set of 0-altitudes, which intersect in the orthocentre
Oo. A tetrahedron has four “0O-altitudes”, which, in general, are generators of
a special hyperboloid, a so-called “trace-0-quadric”, see [9]. The midpoint Mo of
this hyperboloid acts as replacement of an orthocentre Op and is called the
0-Monge-point of the tetrahedron. Furthermore, there are three “1-altitudes”, the
common normals of the three pairs of opposite edges of the tetrahedron. Again,
these three 1-altitudes are, in general, skew and span a hyperboloid. Its midpoint
M then can be defined as the “1-Monge-point” of the tetrahedron, see Fig. 2 and
[23].

~ Distance

Fig. 2: Top-view of a tetrahedron with its 0- and l-altitudes ho'
and hol as well as its Monge points Mo, M; (general case).
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There are tetrahedrons with O-altitudes belonging to a quadric, tetrahedrons
with two pairs of intersecting ones and those having a proper orthocentre Og=Mo.
Another classification could concern the three 1-altitudes, which occur pairwise
skew, with two intersecting ones, with one intersecting the other two in different
points, and with an orthocentre O;.

It is obvious, how to proceed in higher dimensions, but one will note
differences between odd and even dimensions.

3.3 Spheres connected with simplices

Definition 3: A “d-sphere” cq of a simplex S, in a Euclidean n-space touches all
subspaces spanned by d-faces Sq of Si. The always existing 0-sphere cq is called
,circum-(hyper)-sphere, the (hyper)-spheres cn.1 are called “in-(hyper)-spheres”.
The centre Zq of each ¢4 is a “remarkable point“ of S.

A triangle has a circumcircle and 4 incircles, the centres of which form
a triangle together with its orthocentre. A tetrahedron has one circumsphere and
5+3=8 inspheres, whereby 3 inspheres degenerate for equifaced triangles, see
e.g. [2]. In general, there s no “edge sphere” c1, but if there exsts one edge sphere,
so four additional ones, too. For an n-simplex (n > 3), there exist one circum-
hypersphere and n+2 in-hyperspheres, and, like for tetrahedrons, there occur
additional hyperspheres, which degenerate for a regular n-simplex. In general,
there are no d-spheres cq, 1 <d <n -2, but if there exist one, so additional ones,
too. A detailed discussion of the configuration of the (hyper-) spheres’ centres
could be a research topic for its own.

3.4 Euler lines of simplices

Definition 4: The Euler line e, of a simplex S, connects the Monge point Mo (resp.
the orthocentre), the centroid Co = C, , and the circumcentre Z,. Thereby e,
belongs to the connection planes of vertex P; with the Euler line ein.; of the
hyperface opposite to vertex P; of Sp.

On the Euler line of a triangle the points Oo,Co,Zo define the well-known
ratio R(Og,Co,Z0) = 2:1 For an n-simplex S, we get the ratio

R(Oo,Co,Zo) =2: (n -1) . (l)

In the planes P;j v .1 there occur complete quadrilaterals with only rational
ratios on its sides, c.f. the example S in Fig. 3. One could consider chains of such
quadrilaterals, beginning with the Euler line of a 2-face and, step by step, end
with the last quadrilateral containing vertex P;.
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Fig. 3: Euler line e; of a tetrahedron ABCD and the complete quadrilateral
in the plane D v e, (e; Euler line of ABC), with characteristic ratios.

It turns out that equifaced tetrahedrons and regular n-simplices are the only
ones possessing no Euler line. Their Monge point, centroid and circumcentre
coincide.

3.5 Isodynamic points of simplices

For a triangle, the concept “isodynamic point” is well-kown. In the classification
list given by C. Kimberling they are numbered as X(15) and X(16), see [12].
These points have many interesting properties, c.f. [4], [28], and [8]. For
a triangle ABC with sides a, b, ¢ points X fulfilling

dist(XA).a = dist(XB).b = dist(XC).c 2
are called the isodynamic points of ABC. Writing (2) as proportions we see that

each of the three equations describes an Apollonius circle to one side of ABC
and passing through the opposite vertex, see Fig. 4.

Fig. 4: A triangle with its Apollonius circles, which intersect in its
isodynamic points I, J. They are also Bodenmiller points of the
quadrilateral defined by the Apollonius circles.
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A generalisation to higher dimensions might be possible in the following
way:
Definition 6: Let Sd, Sq™ be all pairs of complementary faces of a simplex
Sn = {P«} in a Euclidean space E". Isodynamic points of S" are points {lq} with
the property

dist(X, S¢').vol(S¢™) = dist(X, Sc).vol(Sd*), for all i £k e {1,.,("¢")} (3)

For general simplices and for some dimensions d the set {ls} solving (3)
might be empty.

From Definition 6 follows for a tetrahedron Ss = ABCD with pairs (a, a’),
(b, ), (c, c¢’) of opposite sides that there are two possibilities for sets of
isodynamic points, (Fig. 5):

@ d(X,A).v(BCD) = d(X,B).v(CDA) = d(X,C).v(DAB) = d(X,D).v(ABC)
with solution set {lg}, (43)

(b) d(X.a).a’=d(X.a’).a=d(X,b)b’ = d(X,5).b = d(X,c).c' = d(X,c).c
with solution set {1.}. (4b)

Fig. 5: Symbolic figures for the two cases of isodynamic points
of a tetrahedron; left: X = Iy (4a), and right X = 11 (4b).

Equifaced tetrahedrons have the centroid as their (only) “vertex
isodynamic point” as well as their (only) “edge isodynamic point”. For
general tetrahedrons one can predict the number of edge isodynamic points
in case (b): The pairs of equations (4b) define a hyperboloid as a 3D-
analogue of an Apollonius circle. Intersecting three such hyperboloids result
in 8 isodynamic points (counted in algebraic sense).

Higher dimensional cases would need a more detailed research and
remain open problems.
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4 Equifaced tetrahedrons and simplices

The properties of equifaced tetrahedrons are well-known, c.f. [4], [5], [6], [7],
[14], [18], and we mentioned some of them in the chapter 3. Equifaced means,
that the face triangles are congruent. For the existence of such tetrahedrons it is
necessary that the face triangles are acute. The edges of a generic tetrahedron are
diagonals of a parallelepiped, which, in case of an equifaced tetrahedron is a
prism. This is a consequence of the necessary (and sufficient) property that
opposite edges have equal length. Therefore, they are also called “isosceles
tetrahedrons”, c.f. [2], a term, which is neither precise nor generalisable to other
polyhedrons and polytopes. (There are tetrahedrons with one isosceles pair of
opposite sides, with two and with three such pairs; tetrahedrons can have three,
four, five and finally six isosceles sides.) A new property might be the one
concerning its isodynamic points, see the former chapter. From Fig. 6 we can
read off that four incentres coincide with vertices of the circumscribed prism,
while a fifth is the centre of the prism. This centre represents all the centroid, the
Monge points and the circumcentre, such that there is no Euler line. Three
incentres are ideal points, the corresponding inspheres degenerate.

D outer symmetry plane

incentre

net of S3

Fig. 6: Top-view and net of S; = ABCD (left) and axonometric view (right).

It is also remarkable (and maybe a new result) that their Stella Octangula
allows motions of one tetrahedron at the other, whereby originally intersecting
edges keep contact. A more detailed treatment of this fact is omitted at this place.

In n-spaces (n > 4) equifaced simplices are regular. For a generic n-
simplex the construction of a circumscribed parallelotope is on the lines of the
parallelepiped to a tetrahedron. In Fig. 7 the principle is shown for a 4-simplex
S4. A penteract S4 has 5 vertices, 10 edges, 10 2-faces, 5 3-faces. The resulting
parallelotope has 30 vertices and 10 pairs of parallel 3-faces. For a simplex Ss
there exist two types of circumscribed parallelotopes Pst, Ps?. As the 20 2-faces
of Ss occur in opposite pairs, we still receive only 10 pairs of parallel 4-faces of
Ps? , so again one notices differences between odd and even dimensional cases.
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Fig. 7: Principle of the construction of parallel hyperplanes spanned
by faces of a parallelotope, which is circumscribed to a simplex Sa.

5 Equifaced polyhedrons

(a) An equifaced polyhedron can be derived by intersecting the outer symmetry
planes of two adjacent faces of an Archimedean or Platonic solid. This
construction is also applicable to higher dimensions. Because of the regularity
resp. semi-regularity of the starting polyhedron, all polyhedrons derived in such
a way have an edge sphere cs, c.f. [26].

From a regular tetrahedron one receives the circumscribed cube, from
a regular icosahedron or dodecahedron one gets the rhombic triacontahedron,
from a cube or octahedron the result is the rhombic dodecahedron. The latter is
not the only rhombic dodecahedron; there exists one more, the Bilinski
dodecahedron, see [3], [27]. It can be derived by distorting a regular octahedron
and cutting off 4 of its vertices such that rhombus diagonals have golden ratio,
see Fig. 8.

Fig. 8: Bilinski dlodecahedron deived from a distorted octahedron.

(b) An equifaced polyhedron can also be derived by adding regular pyramids
to the faces of a Platonic or Archimedean solid. There are two parameters to
copnsider, the pyramid’s height and the rotation angle of the pyramid against the
face polygon. This construction can be extended to higher dimensions,
construction (a) is a special case of (b).
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(c) One can add regular pyramids to the regular faces of a Johnson
polyhedron. There are 92 different types of such convex polyhedrons, namely
double pyramids with equilateral face triangles, prisms and antiprisms without
and with added pyramids, polyhedral cupolas and double-cupolas. Fig. 9 shows
an example of a convex extended Johnson polyhedron. Adding similar pyramids
such a polyhedron results in one, which is equifaced with respect to similarities.

*~
R
\

1

Fig. 9: An equifaced polyhedron based on a threesided Johnson prism (left)
and a similar faced polyhedron (right)

(d) Dualising Archimedean solids results in the well-known Catalan solids,
which are naturally equifaced. Besides triangles and rhombuses one finds
deltoids and pentangles as faces. As an example the deltoidal icositetrahedron,
derived from the rhomicuboctahedron, is shown in Fig. 10, together with
a practical application.

=

Fig. 10: The dual of a rhombicuboctahedron is a deltoidal-icositetrahedron,
which received a realisation as a lampshade.

(e) Finally one can pose the question, how many different equifaced
polyhedrons exist to a fixed number of faces. Given eight congruent acute
triangles, one can build three types of octahedrons, which differ in their
symmetry properties, c.f. [Weiss].

Cancelling the property of a polyhedron of being closed, one can construct
infinite equifaced polyhedrons, too. Fig.10 (left) shows an element of such an
infinite polyhedron with pentagonal congruent faces, but besides the regular
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dodecahedron there exist also closed ones, see Fig. 11 (middle and right), c.f.
[27].

Fig. 11: Polyhedrons with congruent pentagons as faces. Left: element of an
infinite column-like polyhedron, middle and right: closed examples ([27]).

6 Origami and equifaced polyhedrons

Origami and Miura-Ori with straight folding edges are polyhedrons in the
classical sense, and many of them are equifaced. They occur mostly as infinite
non-convex structures, and their movability makes them important for technical
and architectural applications. By their nature there are many references to this
topic, as e.g. [29], [21], [20], [10], [11], [17], [19]. Also Kokotsakis polyhedrons
[13] having quadrangular faces are movable polyhedrons, but they are not
equifaced. Among these interesting polyhedrons there are examples, which are
of cupola type, besides non convex examples.
We restrict ourselves to one figure found in [21], Fig.12.

Fig. 12: Movable infinite origami polyhedrons, (from [21]).



Simplices and Equifaced Polyhedrons 213

7 Equifaced polyhedrons with respect to similarities

There exist many polyhedrons with similar triangles as faces. We mentioned one
type in Fig. 8. For example, one can start with a tetrahedron or a double pyramid
with isosceles triangles as faces, such that their edge lengths fulfil a:b = b:c, and,
in a next step, insert triangles fulfilling a:b = b:c = c:d, see Fig. 13.

Fig. 13: Examples of polyhedrons with similar isosceles triangles as faces.

Tetrahedrons with face triangles, the sides of which are in geometric
progression a:b:c = b:c:d are also possible start polyhedrons. Next steps add
similar tetrahedrons to its faces, see Fig. 14.

Fig. 14: Polyhedrons with similar triangles as faces, the sides of which
are in geometric progression.

Fig. 15: A closed polyhedron with similar isosceles trapezoids as faces,
(left); an infinite spiral polyhedron with quadrangular faces, (right).
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Up to now only one type of closed similar-faced polyhedrons having
quadrangular faces could be found. Its faces are isosceles trapezoids and to get it
closed, two symmetric parts must be glued together, see Fig. 15 (left). The
trapezoids have sides a:b:b:b = b:c:c:c and the lengths can be chosen such that
one can generate a closed ring of a certain number of such polyhedrons. Like the
cylindrical origami structures shown in Fig. 11, there are movable spiral
polyhedrons, too, which have similar quadrangular faces, see Fig. 15 (right).
Again, also this topic would be worthy for more attention.

8 Conclusion

We presented a collection of ideas, which follow naturally from classical triangle
geometry translated to higher dimensions, and ideas resulting from an analysis
of the meaning of the words “polyhedron” and “equifaced”. Obviously there
occur many already well-known topics, and the paper aims to give an overview
of these topics. Thereby connections to many other scientific /technical
disciplines can be revealed. The treatments here remain incomplete and are
meant to stimulate others for more detailed research. A more elaborated version
of the elementary geometric part Chapter 3 will be submitted to “G” (Slovensky
Casopis pre geometriu a grafiku).
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Abstract. Recently, we have studied visualizations of the 4-space
in the double orthogonal projection onto two mutually perpendicular
3-spaces. A studied object is projected onto its two conjugated images
in the modeling 3-space — 3D graphics on the computer screen. In this
contribution, we use this method of projection to construct spherical,
circular and point intersections of a 3-sphere with a 3-space, plane,
and line. The provided step-by-step constructions are created in the
interactive software GeoGebra 3D.

Keywords: double orthogonal projection, multidimensional visualiza-
tion, descriptive geometry, 3-sphere

1 Introduction

The set of all points at a constant non-zero distance from a given point
is a circle in a plane, a sphere in a 3-space, or analogically a 3-sphere in
a 4-space, or an n-sphere in an (n + 1)-space, for n € Ny. Although the
generalization of the definition is clear, our (three-dimensional) imagina-
tion of the whole picture fails in the fourth dimension. Instead of trying
to imagine a whole 3-sphere in a given 4-space, we visualize its parts. One
way to understand a four-dimensional object is to construct its sections.
See the argument given by Abbott in [1], p. 71, in which a sphere at-
tempts to persuade a 2-dimensional being into believing in the existence
of three-dimensionality: “But now prepare to receive proof positive of the
truth of my assertions. You cannot indeed see more than one of my sec-
tions, or Circles, at a time; for you have no power to raise your eye out of
the plane of Flatland; but you can at least see that, as I rise in Space, so
my sections become smaller. See now, I will rise; and the effect upon your
eye will be that my Circle will become smaller and smaller till it dwindles
to a point and finally vanishes.” Now, in analogy to understanding the
Sphere from Flatland as a collection of its circle sections, we may visualize
a 3-sphere as a collection of classical 2-spheres. Throughout this paper,
we visualize such sections of a 3-sphere with 3-spaces but also sections
with planes and lines.

The visualizations are created in the double orthogonal projection
of the 4-space onto two mutually perpendicular 3-spaces, which is a gen-
eralization of Monge’s projection. More precisely, let us have a Eu-
clidean 4-space with the orthogonal reference system given by axes z, v, z,
and w. Bach point P(ps,py,p-,Pw) in the 4-space is orthogonally pro-
jected to its E-image P3(py,py,p-) in the 3-space E(z,y, z) and its Q-i-
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mage Py(py, Py, Pw) in the 3-space Q(z,y, w). The 3-spaces =(x,y, z) and
Q(x,y,w) have a common plane 7(x,y). Now, we rotate one of the 3-
spaces, e.g. Q(z,y,w) around the plane 7(x,y) onto the 3-space Z(x,y, 2)
(or vice-versa), such that the axes w and z are oriented oppositely.! This
way we have constructed a modeling 3-space in which a four-dimensional
point P has two conjugated images P3; and P;. The modeling 3-space
is either our physical 3-space or a virtual 3-space in some 3D modeling
software, e.g. GeoGebra 3D, in which our constructions are carried out.
Elementary constructions in the double orthogonal projection used in this
paper are described in detail in [3], sections of polytopes in the consec-
utive article [4] and constructions of quadrics and their sections in [5].
Our constructions and methods are natural generalizations of classical
constructions in Monge’s projection, for example in [2].

To follow the description of our constructions, we recommend using
the step-by-step constructions in the online GeoGebra Book [6], where the
reader can also interactively manipulate with views and input elements of
the given objects. This way the user can obtain some intuitive perception
of both, a 3-sphere and the method of projection. Readers with experi-
ence in descriptive geometry may choose special views to uncover many
analogies with three-dimensional cases.

2 Sections of a 3-sphere

Let us have a unit 3-sphere ¥ embedded in the 4-space with the cen-
ter S[0,0,1,1]. Its orthogonal projections into 3-spaces Z(zx,y,z) and
Q(x,y,w) are 2-spheres 33 and X4, respectively. Both apparent contours
33 and ¥4 have the diameter equal to the diameter of 3. We cut the
3-sphere ¥ consecutively with a 3-space, plane (2-space), and line (1-
space) in the following paragraphs.? Since we use parallel (orthogonal)
projection, the resulting orthogonal images of sections will be, in general,
affinely distorted: a sphere will appear as an ellipsoid and a circle will
appear as an ellipse.

2.1 Spherical section of a 3-sphere with a 3-space (Figure 1)

Let us have a 3-space I' given by its = and Q-traces & and w}, i.e. the
intersections of " with the 3-spaces Z(z, vy, z) and Q(z,y,w). In the first
step, we construct the slope line perpendicular to the trace ¢ through
Ss3 and find the rotated image 3, of the sphere ¥ in the 3-space of sym-
metry perpendicular to Z(z,y, z) through the slope line. Concerning the
upcoming rotation of the 3-space I', we choose the 3-space of symmetry
parallel to the intersection of T with the reference plane m(x,y). Next, we

1For the sake of clarity we do not relabel the points in the rotated 3-space.
2In the presented constructions, we always assume the cutting spaces that intersect
and not touch the 3-sphere.
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Figure 1: Spherical section ¢ of a 3-sphere ¥ with a 3-space T'.
Step-by-step construction:
https://www.geogebra.org/m/a8zxntdh#material/qmfrvcew

find the image I';. of I in the same view. The intersection of ', and X, is
the image o, (circle) of the spherical section o in the rotated view in the
3-space of symmetry of ¥. Now, we would like to reconstruct the = and
Q-images of o, which are, in general, ellipsoids o3 and o4 with a circle of
the diameter equal to the diameter of o, in one of the principal planes.
One principal plane of o3 is the E-trace of the 3-space of symmetry used
for the rotated view, and by the reverse rotation, we obtain an ellipse
(and so, two semi-axes of the ellipsoid) in this principal plane. From the
symmetry of the ellipse, it is apparent that the second principal plane of
o3 is parallel to wl, and it cuts the ellipsoid o3 in the abovementioned
circle of the diameter of o,.. By finding the Q-images of the semi-axes and
applying the well-known Rytz’s construction of the axis of an ellipse from
two conjugated diameters, we finish the ellipsoidal orthogonal image o4
of the spherical section . Furthermore, in the figure, the true shape of
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the spherical section is rotated from o4 around the Q-trace w! to o’ in
the modeling 3-space.

2.2 Circular section c of a 3-sphere with a plane (Figure 2)

Figure 2: Circular section of a 3-sphere ¥ with a plane a.
Step-by-step construction:
https://www.geogebra.org/m/a8zxntdh#material/vgarqbmf

Let us have a plane «a given by its conjugated images a3 and ay. To
construct the circular section ¢ of the 3-sphere ¥, we assume the third
projection is into the 3-space perpendicular to =(z,y, z) with the Z-trace
being ag. Therefore, the circular section o3 of az and X3 is the Z-image
of a spherical section o of ¥ with the 3-space of the third view. After the
rotation of the third view into the modeling 3-space, we obtain ¢ in its
true shape as o,.. Next, we find the rotated image «,. of the plane a. In
the rotated third view, the intersection of o, and «, is a circular section
¢, which is a rotated image of c¢. By the inverse rotation, i.e. the ellipse
¢, is orthogonally projected into aip, we construct the = and -images of
the circular section ¢ — ellipses c¢3 and c4.
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2.3 Intersections of a 3-sphere with a line (Figure 3)

Figure 3: Intersections U and V of a 3-sphere % with a line p.
Step-by-step construction:
https://www.geogebra.org/m/a8zxntdh#material /rgzvzghg

Let us have a line p given by its conjugated images p3 and ps. To
construct the intersection points of the line p and the 3-sphere X, we
again use a convenient third view rotated onto the modeling 3-space.
This time, we choose the 3-space given by the plane of recall of the line
p, i.e. the plane perpendicular to 7(z,y) through ps and p4, and hence E
and )-traces of this 3-space of the third view become overlapping planes.
The circular section o3 of the plane of recall with X3 is an edge view of
the 2-sphere o that appears as ¢, when rotated to the modeling 3-space.
With the use of the trace points of p, we find its rotated image p,.. The
intersection points U, and V;. of ;- and p,- are rotated images of the wanted
intersection points U and V. Reverting the rotation of the third view, we
obtain the = and Q-images Us, V3 and Uy, Vy of the intersecting points
on the perpendiculars to the plane of recall of p through U, and V.. At
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last, from the four-dimensional point of view, the segment UV is inside
the 3-sphere 3, which is highlighted on its images with a dashed line in
the figure.

3 Conclusion

With the use of a 3D interactive software, we have constructed sections
of a 3-sphere in the four-dimensional space. These constructions are an
important addition to our previous work on four-dimensional visualization
using the double orthogonal projection of the 4-space onto two mutually
perpendicular 3-spaces. The visualizations and interactive constructions
are prepared for the use in further investigation of properties of a 3-sphere.
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